首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)。证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)。证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
admin
2018-06-30
114
问题
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)。证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
选项
答案
令φ(x)=f(x)一g(x),以下分两种情况讨论: 1)若f(x)和g(x)在(a,b)内的同一点处c∈(a,b)取到其最大值,则φ(c)=f(c)一g(c)=0,又φ(a)=φ(b)=0,由罗尔定理知 [*]ξ
1
∈(a,c),使φ’(ξ
1
)=0;[*]ξ
2
∈(c,b),使φ’(ξ
2
)=0 对φ’(x)在[ξ
1
,ξ
2
]上用罗尔定理得,[*]ξ∈(ξ
1
,ξ
2
),使φ"(ξ)=0 2)若f(x)和g(x)在(a,b)内不在同一点处取到其最大值,不妨设f(x)和g(x)分别在x
1
和x
2
(x
1
< x
2
)取到其在(a,b)内的最大值,则 φ(x
1
)=f(x
1
)一g(x
1
)>0, φ(x
2
)=f(x
2
)一g(x
2
)<0 由连续函数的介值定理知,[*]c∈(x
1
,x
2
),使φ(c)=0.以下证明与1)相同.
解析
若令φ(x)=f(x)一g(x),本题需证存在ξ∈(a,b),使φ"(ξ)=0,而φ(a)=f(a)一g(a)=0,φ(b)=f(b)一g(b)=0,若能证明存在c∈(a,b),使φ(c)=0,此时,φ(a)=φ(c)=φ(b),由罗尔定理可证明存在ξ∈(a,b),使φ"(ξ)=0.
转载请注明原文地址:https://kaotiyun.com/show/DRg4777K
0
考研数学一
相关试题推荐
设D为xOy平面上的区域,若f’’xy与f’’yx都在D上连续,证明:f’’xy与f’’yx在D上相等.
设函数f(x,y)连续,且f(x,y)=x+∫∫Dyf(u,v)dudv,其中D由,x=1,y=2围成,求f(x,y).
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量线性无关.
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[-1,2,2,1]T.求线性方程组(Ⅰ)的基础解系;
假设随机变量X服从参数为λ的指数分布,求随机变量Y=1-e-λX的概率密度函数fy(y).
向半径为r的圆内随机抛一点,求此点到圆心之距离X的分布函数F(x),并求
微分方程的特解是________
求曲线y=ex上的最大曲率及其曲率圆方程.
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
随机试题
A.透疹B.利咽C.两者均是D.两者均非蝉蜕具有的功效是()
男性,31岁,尿频、尿急、尿痛1年余,有时尿浑浊,服用多种抗生素治疗无效。尿液检查:脓球满视野,蛋白(++)。具有诊断价值的辅助检查为
禁用于外周血管痉挛性疾病的药物是
小青龙胶囊,药物组成有麻黄、桂枝、干姜、细辛、五味子、白芍、法半夏、炙甘草。功能是解表化止咳平喘。主治风寒水饮,恶寒发热、无汗、咳喘痰稀。方中细辛在《中国药典》中的质量控制成分是()。
某工程项目采用公开招标的采购方式,有A、B、C、D、E、F六家施工单位领取了招标文件。本工程招标文件规定:2016年10月20日上午9:30为投标文件提交的截止时间。在提交投标文件的同时,投标单位需要提供投标保证金20万元。A、B、C、D、F五家投标单位于
假如已到下班时间,你与朋友已有约会,而这时秘书又告诉你有一件紧急公务,需要你处理,你将怎么办?
A、 B、 C、 D、 A
Manufacturershavelearnedthatconsumersplaceahighvalue(150)convenienceanddisposability.Today,manyproducts—suchas
Starbirth,whichtransformedprimordialgasintothecountlessstarrygalaxiesofthepresentdayuniverse,surgedtohighleve
Astudyofthephysicalactivityhabitsof4,563adultsfoundthatthosewhosaidtheydidthemosthouseworkwerealsothelarg
最新回复
(
0
)