首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0。 证明α1,α2,…,αn线性无关;
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0。 证明α1,α2,…,αn线性无关;
admin
2015-11-16
38
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0。
证明α
1
,α
2
,…,α
n
线性无关;
选项
答案
设 k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0, ① 用A
n-1
左乘①,得到 k
1
A
n-1
α
1
+k
2
A
n-1
α
2
+…+k
n
A
n-1
α
n
=0。 注意到A
i
α
j
=0,i+j≥n+1,当i+j
iα
j
≠0,故 A
n-1
α
2
=0,A
n-1
α
3
=0,…,A
n-1
α
n
=0,A
n-1
α
1
=≠0, 从而k
1
A
n-1
α
1
=0,即 k
1
A
n-1
α
1
=k
1
A
n-2
α
2
=…=k
1
Aα
n-1
=k
1
α
n
=0, 而α
n
≠0,故k
1
=0。 同法用A
n-2
,A
n-1
,…,A左乘式①可得 k
2
=k
3
=…=k
n-1
=0。 代入式①有k
n
α
n
=0,而α
n
≠0,故k
n
=0,所以α
1
,α
2
,…,α
n
线性无关。
解析
[证题思路] 利用线性无关的定义证之,转化为矩阵关系,利用相似矩阵性质求之。
转载请注明原文地址:https://kaotiyun.com/show/DUw4777K
0
考研数学一
相关试题推荐
求.
求下列不定积分:
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,证明:在(a,b)内至少存在一点ξ,使得等式=f(ξ)-ξf’(ξ)成立。
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
求曲线Y=x3,x=1与x轴围成的封闭图形绕x=2旋转一周所得旋转体的体积.
计算二重积分,其中积分区域D是由y轴与曲线所围成。[img][/img]
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为v0(m/s),飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg·s2/m2),在垂直方向的比例系数为ky(kg·s2/m2)
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)确定,其中f可微,求的最简表达式.
设{un}为正项单调递增数列,证明收敛的充要条件是收敛.
计算,Ω是球面x2+y2+z2=4与抛物面x2+y2=3z所围形成.
随机试题
可转换债券的赎回价格是事先约定的,一般为可转换债券面值的()
细胞滋养层
动物疾病发展过程中,从疾病出现最初症状到主要症状开始暴露的时期称为()
会计核算软件应能打印下列()数据。
股份支付的内在价值是指交易对方有权认购或取得的股份的公允价值。()
我国内地第一个大型主题公园是()。
阅读以下材料,完成下列问题。2012年山东省农村居民人均总收入13645.26元,同比增长12.34%。分类项目中,工资总收入4383.22元,同比增长17.98%,其中,在本乡地域内劳动得到收入2615.32元,外出就业得到收入1448.4元,同比分别
2009年末我国广义货币供应量(M2)余额为60.6万亿元,比上年末增长27.7%;狭义货币供应量(M1)余额为22.0万亿元,增长32.4%;流通中现金(M0)余额为3.8万亿元,增长11.8%。年末全部金融机构本外币各项存款余额61.2万亿元
若变量x、y已正确定义并赋值,以下符合C语言语法的表达式是
WhywastheWorldHealthDayrecognizedbyWHO?WhatcanbedoneinordertopreventababydyingfromAIDSviruspassedbyits
最新回复
(
0
)