首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设在一次试验中事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________,而事件A至多发生一次的概率为___________.
设在一次试验中事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________,而事件A至多发生一次的概率为___________.
admin
2020-03-18
116
问题
设在一次试验中事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________,而事件A至多发生一次的概率为___________.
选项
答案
1-q
n
(q=1-p);(1-p)
n
+np(1-p)
n-1
解析
由于每次试验中事件A发生的概率都是p,且n次试验相互独立,这是n重伯努利试验概型.设B
k
={n次试验中事件A发生忌次),由命题3.1.2.2得到
P(B
k
)=C
n
k
p
k
(1-p)
n-k
(k=0,1,…,n).
又事件A至少发生一次的概率,由命题3.1.2.3知,A至少发生一次的概率为1-(1-p)
2n
.或
1-P(B
0
)=1-C
n
0
p
0
(1-p)
n-0
=1-(1-p)
n
=1-q
n
(q=1-p).
事件A至多发生一次的概率为
P(B
0
)+P(B
1
)=C
n
0
p
0
(1-p)
n=0
+C
n
1
p(1-p)
n-1
=(1-p)
n
+np(1-p)
n-1
.
注:命题3.1.2.2 设在一次试验中事件A发生的概率为p(0<p<1),令事件B
k
={n重伯努利试验概型中事件A恰好发生k次},则
P(B
k
)=C
n
k
p
k
(1-p)
n-k
(k=0,1,2,…,n). (3.1.2.2)
上述公式常称为伯努利概率公式.
在n重伯努利试验概型中除了经常用于计算“恰好发生k次”的概率外,还会被经常用来“计算至少成功一次”或“至少失败一次”的概率.
命题3.1.2.3 若每次试验成功的概率是p(0<p<1),失败的概率为q(q=1-p),则n次试验中至少成功一次的概率为1-(1-p)
n
=1-q
n
,至少失败一次的概率为1-p
n
.
转载请注明原文地址:https://kaotiyun.com/show/DiD4777K
0
考研数学三
相关试题推荐
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明:
设f(x)在[a,b]可积,求证:在[a,b]上连续,其中x2∈[a,b].
设函数f(x)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:其中g(x)是,f(x)的反函数.
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设二维随机变量(X1,X2)的密度函数为f1(x1,x2),则随机变量(Y1,Y2)(其中Y1=2X1,Y2=X2)的概率密度f2(y1,y2)等于()
设A、B均为n阶非零矩阵,且AB=O,则A与B的秩()
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(I):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则().
二次型f(x1,x2,x3)=的标准形可以是()
某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<p<1),则此人第4次射击恰好第2次命中目标的概率为
设一阶非齐次线性微分方程yˊ+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=________.
随机试题
细菌的致病性强弱主要取决于()。
在卫生条件不完善的宾馆、旅店住宿的顾客容易患的疾病主要有
先天性心脏病最常见的类型是
指出背景材料中的不妥之处,并改正。项目质量计划包括的内容有哪些?
(2017年)下列各项中,关于企业以自产产品作为福利发放给职工的会计处理表述不正确的是()。
已知岗位分类的步骤包括以下四个方面,正确的顺序为()。①纵向分级;②制定岗位说明书;③横向分类;④建立岗位分类图
著名的《第九交响曲》又名《自新大陆》,是作曲家柴可夫斯基的不朽之作。()
为指导和推动循环经济加快发展.实现“十二五”规划纲要提出的资源产出率提高15%的目标,我国编制了《循环经济发展战略及近期行动计划》,对发展循环经济作出了战略规划。下列关于循环经济的表述,错误的是()。
Husband:Youaren’tgoingoutdressedlikethat,areyou?Wife:______IthoughtIlookedreallysmart.
ThepyramidsSomeofthemostinterestingbuildingintheworldarethepyramids.Thepyramidsstandhugeandsilent,andin
最新回复
(
0
)