首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12. 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12. 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
admin
2017-06-14
62
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12.
利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
由矩阵A的特征多项式 [*] 得A的特征值λ
1
=λ
2
=2,λ
3
=-3. 对于λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,得其基础解系 ξ
1
=(2,0,1)
T
,ξ
2
=(0,1,0)
T
. 对于λ
3
=-3,解齐次线性方程组(-3E-A)x=0,得其基础解系 ξ
3
=(1,0,-2)
T
. 由于ξ
1
,ξ
2
,ξ
3
已是正交向量组,为了得到规范正交向量组,只需将ξ
1
,ξ
2
,ξ
3
单位化,由此得 [*] 则Q为正交矩阵.在正交变换X=QY下,有 [*] 且二次型的标准形为 f=2y
1
2
+2y
2
2
-3y
3
2
. 本题求a,b,也可先计算特征多项式,再利用根与系数的关系确定. 二次型厂的矩阵A对应的特征多项式为 [*] =(λ-2)[ λ
2
-(a-2) λ-(2a+b)
2
] 设A的特征值为λ
1
,λ
2
,λ
3
,则λ
1
=2, λ
2
+λ
3
=a-2, λ
2
λ
3
=-(2a+b
2
).由题设得 λ
1
+λ
2
+λ
3
=2+(a-2)=1, λ
1
λ
2
λ
3
=-2(2a+b
2
)=-12. 得a=1,b=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dpu4777K
0
考研数学一
相关试题推荐
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱仪装有3件合格品.从甲箱中任取3件产品放入乙箱后,乙箱中次品件数X的数学期望=__________;(2)从乙箱中任一件产品是次品的概率=_____________.
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.令P=(α1,α2,α3),求p-1AP.
设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x))
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
判断下列函数的单调性:
随机试题
证明:当x>0时,2-≤lnx≤
心悸实证的病机是
扫描机架单向连续旋转X线管曝光,检查床同时不停顿单向移动并采集数据的扫描方式是
关于中国人民银行的监督管理权,下列说法正确的是()。
D公司为投资中心,下设甲、乙两个利润中心,相关财务资料如下:资料一:甲利润中心营业收入为38000元,变动成本总额为14000元,利润中心负责人可控的固定成本为4000元,利润中心负责人不可控但应由该中心负担的固定成本为7000元。资料
隋唐五代是我国文化史上一个鼎盛期,名作纷出,《游春图卷》、《牧马图》、《五牛图》、《韩熙载夜宴图》的作者依次是()。
关于遗忘的理论解释有()。
设D={(x,y)|0≤x≤π,0≤y≤π},则sinxsiny·max{x,y}如等于().
在以下各通用顶级域名中,(56)表示网络机构。
关于Python遍历循环,以下选项中描述错误的是
最新回复
(
0
)