首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12. 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12. 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
admin
2017-06-14
77
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12.
利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
由矩阵A的特征多项式 [*] 得A的特征值λ
1
=λ
2
=2,λ
3
=-3. 对于λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,得其基础解系 ξ
1
=(2,0,1)
T
,ξ
2
=(0,1,0)
T
. 对于λ
3
=-3,解齐次线性方程组(-3E-A)x=0,得其基础解系 ξ
3
=(1,0,-2)
T
. 由于ξ
1
,ξ
2
,ξ
3
已是正交向量组,为了得到规范正交向量组,只需将ξ
1
,ξ
2
,ξ
3
单位化,由此得 [*] 则Q为正交矩阵.在正交变换X=QY下,有 [*] 且二次型的标准形为 f=2y
1
2
+2y
2
2
-3y
3
2
. 本题求a,b,也可先计算特征多项式,再利用根与系数的关系确定. 二次型厂的矩阵A对应的特征多项式为 [*] =(λ-2)[ λ
2
-(a-2) λ-(2a+b)
2
] 设A的特征值为λ
1
,λ
2
,λ
3
,则λ
1
=2, λ
2
+λ
3
=a-2, λ
2
λ
3
=-(2a+b
2
).由题设得 λ
1
+λ
2
+λ
3
=2+(a-2)=1, λ
1
λ
2
λ
3
=-2(2a+b
2
)=-12. 得a=1,b=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dpu4777K
0
考研数学一
相关试题推荐
设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=________.
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.求矩阵B.
(2000年试题,十)设矩阵A的伴随矩阵且ABA-1=BA-1+3E,其中E为4阶单位矩阵,求矩阵B.
(2012年试题,二)设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为_________________.
设函数y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
采用拼组机床加工大型零件,具有的主要特点有()。
我国安全的生产方针是:"安全第一、预防为主"。
文字起源于()
下列检查中,哪一项对鉴别单纯性与绞窄性肠梗阻最有帮助()
不属于神经反射检查的内容是()
根据《中华人民共和国水土保持法》,修建铁路、公路和水工程时必须采取的防止水土流失措施有()。
某保险公司计划推出一项医疗保险,对象是60岁以上经体检无重大疾病的老年人。投保者在有生之年如果患心血管疾病或癌症,则其医疗费用的90%将由保险公司赔付。为了吸引投保者,保险金又不能定得太高。有人估计保险金将不足以支付赔付金,因而会是个赔本生意。尽管如此,保
Ifyousmoke,nooneneedstotellyouhowbaditis.Sowhyhaven’tyouquit?Whyhasn’teveryone?Becausesmokingfeelsgo
有以下程序main(){intx=1,y=0,a=0,b=0;switch(x){case1:switch(y){case0:a++:break;case1:b++;break;}case2:a++;b++;break;case3:a++;
Franklyspeaking,I’dratheryou(make)______nocommentontheissueattheconferenceyesterday.
最新回复
(
0
)