首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12. 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12. 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
admin
2017-06-14
80
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12.
利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
由矩阵A的特征多项式 [*] 得A的特征值λ
1
=λ
2
=2,λ
3
=-3. 对于λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,得其基础解系 ξ
1
=(2,0,1)
T
,ξ
2
=(0,1,0)
T
. 对于λ
3
=-3,解齐次线性方程组(-3E-A)x=0,得其基础解系 ξ
3
=(1,0,-2)
T
. 由于ξ
1
,ξ
2
,ξ
3
已是正交向量组,为了得到规范正交向量组,只需将ξ
1
,ξ
2
,ξ
3
单位化,由此得 [*] 则Q为正交矩阵.在正交变换X=QY下,有 [*] 且二次型的标准形为 f=2y
1
2
+2y
2
2
-3y
3
2
. 本题求a,b,也可先计算特征多项式,再利用根与系数的关系确定. 二次型厂的矩阵A对应的特征多项式为 [*] =(λ-2)[ λ
2
-(a-2) λ-(2a+b)
2
] 设A的特征值为λ
1
,λ
2
,λ
3
,则λ
1
=2, λ
2
+λ
3
=a-2, λ
2
λ
3
=-(2a+b
2
).由题设得 λ
1
+λ
2
+λ
3
=2+(a-2)=1, λ
1
λ
2
λ
3
=-2(2a+b
2
)=-12. 得a=1,b=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dpu4777K
0
考研数学一
相关试题推荐
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
若函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex,则f(x)=_________.
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
设A,B为满足AB=0的任意两个非零矩阵,则必有
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
设函数y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
9个月男孩,因其尚未出牙就诊,最恰当的处理是
某市政协扎实推进“请你来协商”平台建设,开展“请你来协商”重点活动,通过面对面协商、点对点交流,不少意见建议得到采纳并转化为工作举措。从实质民主角度看,“请你来协商”平台()。
Therearemomentsinlifewhenyou_______【C1】someonesomuchthatyoujustwanttopickthemfromyourdreamsandhugthemfor
下列是右心衰竭致心源性水肿时的体征,除了
有一名颅内压增高病人,持续颅内压增高导致病理生理紊乱,但应除外
关于工业小型汽轮机转子安装技术要点的说法中,正确的有()。
下列不属于系统风险的是()
内容、设计、编校质量均合格,印刷装订质量不合格的成品图书,其总体质量等级为()。
已知数列{log3(an+1)}(a∈N*)为等差数列,a2=2,a4=26,则数列{an}的通项公式为______.
揭示了“教师的期望使学生的学习成绩和行为表现发生积极变化”这一原理的效应称为()。
最新回复
(
0
)