首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是对应的齐次方程的解,则
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是对应的齐次方程的解,则
admin
2014-01-26
108
问题
设y
1
,y
2
是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy
1
+μy
2
是该方程的解,λy
1
-μy
2
是对应的齐次方程的解,则
选项
A、
B、
C、
D、
答案
A
解析
[分析] 此题主要考查线性微分方程解的性质和结构.
[详解] 因λy
1
-μy
12
是方程y’+p(x)y=0的解,所以
(λy
1
-μy
2
)’+p(x)(λy
1
-μy
2
)=0,
即 λ[y’
1
+p(x)y
1
]-μ[y’
2
+p(x)y
2
]=0.
由已知得 (λ-μ)q(x)=0,
因为q(x)≠0,所以λ-μ=0,
又λy
1
+μy
21
是非齐次方程y’+p(x)y=q(x)的解,
故 (λy
1
+μy
2
)’+p(x)(λy
1
+μy
2
)=g(x).
即 λ[y’
1
+p(x)y
1
]-μ[y’
2
+p(x)y
2
]=q(x).
由已知得 (λ+μ)q(x)=g(x).
因为q(x)≠0,所以λ+u=1,
解得
[评注] 此题属反问题,题目构造较新颖.
转载请注明原文地址:https://kaotiyun.com/show/Rm34777K
0
考研数学二
相关试题推荐
(2007年)将函数展开成x一1的幂级数,并指出其收敛区间。
[2018年]下列函数中,在x=0处不可导的是()
(06年)证明:当0<a<b<π时,bsinb+2cosb+π6>asina+2cosa+πa.
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(92年)设3阶矩阵B≠O,且B的每一列都是以下方程组的解:(1)求λ的值;(2)证明|B|=0.
[2018年]已知总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,σ为大于0的参数,记σ的最大似然估计量为求
(02年)设函数u=f(χ,y,z)有连续偏导数,且z=z(χ,y)由方程χeχ-yey=zez所确定,求du.
(15年)设矩阵A=相似于矩阵B=.(Ⅰ)求a,b的值;(Ⅱ)求可逆矩阵P,使P-1AP为对角矩阵.
(2007年)当x→0+时,与等价的无穷小量是()
已知两个向量组α1=(1,2,3)T,α2=(1,0,1)T与β1=(-1,2,t)T,β2=(4,1,5)T。(Ⅰ)t为何值时,α1,α2与β1,β2等价;(Ⅱ)当两个向量组等价时,写出两个向量组之间的线性表示式。
随机试题
政策评估标准包括事实标准、技术标准和
A、ANewYorkexecutive.B、Aphysician.C、Atelevisionannouncer.D、Ateacher.D从“Ithinktheprogramwillbeveryhelpfulwitht
关于骨骼肌兴奋-收缩偶联,错误的是
承认区分所有权人按份额享有基地使用权,有()等好处。
下列关于施工平面图规划原则的说法中,错误的是()。
下列有关积极的组合管理的说法中,正确的有()。
如果需求价格弹性系数小于1,则价格上升会使销售收入( )。
中国产品要增强国际竞争力,实现由“中国制造”向“中国‘智’造”转变,其关键是()。
Amancannotsmilelikeachild,______achildsmileswithhiseyes,whileamansmileswithhislipsalone.
Myroommatecould____________(急着炫耀)hisnewmobilephone.
最新回复
(
0
)