首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=x12+x22+x32—4x1x2—4x1x3+2ax2x3经正交变换化为3y12+3y22+by32,求a,b的值及所用正交变换。
设二次型f=x12+x22+x32—4x1x2—4x1x3+2ax2x3经正交变换化为3y12+3y22+by32,求a,b的值及所用正交变换。
admin
2018-12-19
103
问题
设二次型f=x
1
2
+x
2
2
+x
3
2
—4x
1
x
2
—4x
1
x
3
+2ax
2
x
3
经正交变换化为3y
1
2
+3y
2
2
+by
3
2
,求a,b的值及所用正交变换。
选项
答案
二次型及其标准形的矩阵分别是 [*] 由于是用正交变换化为标准形,故A与B不仅合同而且相似。由1+1+1=3+3+b得b=一3。 对λ=3,则有 |3E—A|=[*]=一2(a+2)
2
=0, 因此a=一2(二重根)。 由(3E—A)x=0,得特征向量α
1
=(1,一1,0)
T
,α
2
=(1,0,一1)
T
。 由(一3E一A)x=0,得特征向量α
3
=(1,1,1)
T
。 因为λ=3是二重特征值,对α
1
,α
2
正交化有 β
1
=α
1
=(1,一1,0)
T
, [*] 单位化,有 [*] 则令 C=(γ
1
,γ
2
,γ
3
)=[*] 经正交交换x=Cy,二次型化为3y
1
2
+3y
2
2
一3y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/EAj4777K
0
考研数学二
相关试题推荐
(1994年)如图2.9所示,设曲线方程为y=χ2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
(1997年)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(2011年)设向量组α1=(1,0,1)T,α2(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有【】
(1998年)设y=f(χ)是区间[0,1]上任一非负连续函数.(1)试证存在χ0∈(0,1),使得在区间在区间[0,χ0]上以f(χ0)为高的矩形的面积等于在区间[χ0,1]上以y=f(χ)为曲面的曲边梯形的面积.(2)又设f(χ)在
(2003年)若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
(2015年)设3阶矩阵A的特征值为2,-2,1,B=A2-A+E,其中E为3阶单位矩阵,则行列式|B|=_______.
(1993年)设二阶常系数线性微分方程y〞+αy′+βy=γeχ的一个特解为y=e2χ+(1+χ)eχ,试确定常数α、β、γ,并求该方程的通解.
(1993年)求微分方程(χ2-1)dy+(2χy-cosχ)dχ=0满足初始条件y|χ=1=1的特解.
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
随机试题
头空而痛,神疲乏力者,可按摩头部()。
不孕原因中,男性因素与女性因素各占50%。()
患者,女性,60岁,因肺炎住院治疗,因长期输液需要,预留置静脉套管针。对该患者的处理,下列不正确的是
某企业采用丙烯双氧水生产环氧丙烷,双氧水含有70mg/L的磷酸助剂,助剂有水合肼等,该企业排水中的污染物有()。
遵循历史成本计价原则,物价变动时,除国家另有规定者外,不得调整各项财产物资的账面价值。()
已开具的发票存根联和发票登记簿应当保存5年,保存期满,报经税务机关查验后销毁。()
某汽车制造企业属于增值税一般纳税人,生产某种品牌的小轿车,每辆不含税平均销售价格和最高销售价格均为10万元,2016年2月发生如下业务:(1)与某特约经销商签订了40辆小轿车的平销返利协议,协议规定按含税销售额的5%支付返还收入,当月收到经销商返回的30
下列关于和解与整顿制度的说法中,正确的是()。
“时术功虽细,年深祸亦成。功穿漏江海,蚕食困蛟鲸。”元稹《蚁》诗的这句话蕴含的辩证法思想是
国内期货交易所均采用()成交方式。
最新回复
(
0
)