首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度:(I)D={(x,y)|y>0},并确定函数u(x,y)的表达式;(Ⅱ)D={(x,y)|x2+y2>0}.
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度:(I)D={(x,y)|y>0},并确定函数u(x,y)的表达式;(Ⅱ)D={(x,y)|x2+y2>0}.
admin
2017-07-28
54
问题
选择常数λ取的值,使得向量A(x,y)=2xy(x
4
+y
2
)
λ
i—x
2
(x
4
+y
2
)
λ
j在如下区域D为某二元函数u(x,y)的梯度:(I)D={(x,y)|y>0},并确定函数u(x,y)的表达式;(Ⅱ)D={(x,y)|x
2
+y
2
>0}.
选项
答案
记A=P(x,y)i+Q(x,y)j,先由(P,Q)为某二元函数u的梯度(即du=Pdx+Qdy)的必要条件[*]定出参数λ. [*] (I)由于D={(x,y)|y>0;是单连通,λ=一1是存在u(x,y)使du=Pdx+Qdy的充要条件,因此仅当λ=一1时存在u(x,y)使(P,Q))为u的梯度. 现求u(x,y),使得du(x,y)=[*] 凑微分法. [*] (Ⅱ)D={(x,y)|x
2
+y
2
>0}是非单连通区域,[*]((x,y)∈D)不足以保证Pdx+Qdy存在原函数.我们再取环绕(0,0)的闭曲线C:x
4
+y
2
=1,逆时针方向,求出 [*] 其中D
0
是C围成的区域,它关于y轴对称.于是∫
L
Pdx+Qdy在D与路径无关,即Pdx+Qdy在D存在原函数.因此,仅当λ=一1时A(x,y)=(P,Q)在D为某二元函数u(x,y)的梯度.
解析
转载请注明原文地址:https://kaotiyun.com/show/EKu4777K
0
考研数学一
相关试题推荐
设f(x,y)与φ(x,y)均为可微函数,且(φy’,(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是().
设函数Y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
设f(u,v)是二元可微函数=________.
设f(x,y)=,则函数在原点处偏导数存在的情况是().
(2009年试题,19)计算曲面积分其中∑是曲面2x2+2y2+z2=4的外侧.
设xOy平面第一象限中有曲线F:y=),(x),过点A(0,),y’(x)>0.又M(x,y)为F上任意一点,满足:弧段的长度与点M处F的切线在x轴上的截距之差为.求曲线厂的表达式.
设f(x,y)在(x0,y0)某邻域有定义,且满足:f(x,y)=f(x0,y0)+a(x一x0)+b(y—y0)+a(ρ)(ρ→0),其中a,b为常数.则
设点M(ξ,η,ζ)是椭球面上第一象限中的点,S是该椭球面点M处的切平面被三个坐标面所截得的三角形上侧,求(ξ,η,ζ),使曲面积分为最小,并求此最小值.
由题设,设原积分中两部分的积分区域分别如图所示,则[*]
设球体x2+y2+z2≤2az(如图1.6—1)中任一点的密度与该点到坐标原点的距离成正比,求此球体的重心.
随机试题
下列哪一种消毒剂不是高效水平消毒剂【】
男性,40岁,反复脓血便伴腹痛4年,有疼痛-便意-便后缓解的规律,每日大便4~5次,查体左下腹轻压痛,粪便细菌培养阴性,最可能的诊断是
有关HIV的描述哪项不正确( )。
墙体下的刚性条形混凝土(C15)基础如图所示。荷载效应标准组合基础底面处的平均压力值PK=180kPa。当基础厚度为H时,台阶宽度b的最大尺寸为()。
根据《建设工程质量管理条例》,建设单位在申领施工许可证之前,应当按照有关规定办理()。
在进行另类资产投资时,需承担的风险有()。
下列情况中属于特大旅游安全事故的是()。
在考生文件夹下有一个工程文件sjt5.vbp和随机文件in5.txt,文件中的每个记录包括三个字段,分别为姓名、电话和邮编,其名称、类型和长度如下:窗体中有一个文本框和两个命令按钮。程序运行后,如果单击“读入并显示记录”按钮,则从考生文件夹下的in5.
设有下面程序代码:PlIivateSubCommandl_Click()DimstrAsString,chAsStringstr=”VisualBasicProgramming”
考生文件夹下存在一个数据库文件“samp1.accdb”,里面已经设计好表对象“tEmployee”。试按以下要求,完成表的编辑:在编辑完的表中追加以下一条新记录:
最新回复
(
0
)