设曲线r=2cosθ,, 则该曲线所围成的平面区域绕直线θ=旋转所得的旋转体体积为__________。

admin2020-04-21  35

问题 设曲线r=2cosθ,
则该曲线所围成的平面区域绕直线θ=旋转所得的旋转体体积为__________。

选项

答案2

解析 将极坐标曲线r=2cosθ,
化为直角坐标下的曲线为x2+y2=2x,可见该曲线围成的平面区域为圆,如图所示。根据图形的对称性,该圆绕θ=π/2(y轴)旋转后的体积为区域D绕y轴旋转体积的2倍,即
V=2∫022πxf(x)dx==2π2
转载请注明原文地址:https://kaotiyun.com/show/En84777K
0

最新回复(0)