首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)1x2的秩为2. (Ⅱ
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)1x2的秩为2. (Ⅱ
admin
2018-08-03
119
问题
已知二次型f(x
1
,x
2
,x
3
)=(1一a)x
1
2
+(1一a)x
2
2
+2x
3
2
+2(1+a)
1
x
2
的秩为2.
(Ⅱ
选项
答案
当a=0时,A=[*]=(λ一2)
2
λ 可知A的特征值为λ
1
=λ
2
=2,λ
3
=0. A的属于λ
1
=2的线性无关的特征向量为 η
1
=(1,1,0)
T
,η
2
=(0,0,1)
T
A的属于λ
3
=0的线性无关的特征量为 η
3
=(一1,1,0)
2
易见η
1
,η
2
,η
3
两两正交.将η
1
,η
2
,η
3
单位化得 e
1
=[*](1,1,0)
2
,e
2
=(0,0,1)
2
,e
3
=[*](一1,1,0)
2
取Q=(e
1
,e
2
,e
3
),则Q为正交矩阵.作正交变换x=Qy,得f的标准形为 f(x
1
,x
2
,x
3
)=λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
=2y
1
2
+2y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Erg4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)一f(x)=0在(0,1)内有根.
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设A是m×n阶矩阵,B是n×m阶矩阵,则().
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(II)V=|X—Y|的概率密度fV(v)。
设A是n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
经过点A(-1,2,3),垂直于直线L:且与平面∏:7X+8Y+9z+10=0平行的直线方程是___________.
假设批量生产的某种配件的内径X服从正态分布N(μ,σ2),今随机抽取16个配件,测得平均内径=3.05毫米,样本标准差s=0.4毫米,试求μ和σ2的90%置信区间.
二次型f(x1,x2,x3)=5一2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的坐标变换.
设A是m×n矩阵,B=λE+ATA,证明当λ>0时,B是正定矩阵.
随机试题
关于《浮士德》的表述,错误的是()
龙胆泻肝汤出自下列哪本著作
拟建某冶金企业年产钢200万t,工作制度为年工作365d,厂址地处丘陵地带,坡度在20°~30°,丘陵之间距离紧密。据调查,企业纳污水体全长约为128km,流域面积为1200km2,年平均流量为78m3/s,河宽为30~50m,水深为5~7m,枯水期为12
从资源投入到成果实现的过程,主要就是协调人力和其他资源以执行工程项目计划,充分体现了PDCA循环中的()。
有关盾构机说法正确的有()。
影响股票投资价值的内部因素包括()。①公司净资产②股利政策③并购重组④货币政策
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+),)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
ThereisonquestionbutthatNewtonwasahighlycompetentMinisterofMint.Itwasmainlythroughhisefforts【1】theEnglishcu
Manypeoplethinkthatthestandardsofpublic______havedeclined.
BringOurSchoolsoutofthe20thCentury[A]There’sadarklittlejokeexchangedbyeducatorswithanopposingtrace:RipVanW
最新回复
(
0
)