首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且 对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+…+nan|≤1.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且 对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+…+nan|≤1.
admin
2018-01-23
34
问题
设f(x)=a
1
ln(1+x)+a
2
ln(1+2x)+…+a
n
ln(1+nx),其中a
1
,a
2
,…,a
n
为常数,且
对一切x有|f(x)|≤|e
x
-1|.证明:|a
1
+2a
2
+…+na
n
|≤1.
选项
答案
当x≠0时,由|f(x)|≤|e
x
-1|得[*] 而[*] =a
1
+2a
2
+…+na
n
, 且[*]=1,根据极限保号性得|a
1
+2a
2
+…+na
n
|≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/FAX4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,证明:存在ξ∈(a,b),使得
设A,B,C是三个随机事件,P(ABC)=0,且0<P(c)<1,则一定有()
差分方程yx+1一2yx=3x2的通解为______________。
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b)其中a、b满足条件0≤a≤b≤a+b≤c.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).当L与直线y=ax所围成平面图形的面积为时,确定口的值.
设A=(a1,a2,a3,a4)为四阶方阵,且a1,a2,a3,a4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为().
设总体X的密度函数为f(x)=其中θ>-1是未知参数,X1,X2,…,Xn是来自总体X的简单随机样本.求θ的矩估计量;
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:方程组Ax=b的任一个解均可由η,η+ξ1,η+ξ2,η+ξn-r线性表出.
齐次线性方程组的一个基础解系为_______
设f(x)可导,则当△x→0时,△y一dy是△x的().
随机试题
存在交往困难的儿童分两种:__________、__________。
下列对计算机软件作品登记的表述,正确的是()
设A是m×n非零矩阵,方程组Ax=0有非零解的充要条件是()。
下列关于设计合同的生效和设计期限的说法正确的是( )。
下列各项中,会导致被审计单位当期应付职工薪酬虚增的有()。
某战士在抗击强台风“梅花”时,受伤失血过多需要输血,如果该战士是O型血,则应给他输入()。
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵
执行下列程序后,(AX)=( )。 TAB DW 1,2,3,4,5,6 ENTRY EQU 3 ...MOV BX,OFFSET TAB ADD BX,ENTR
A、Cousins.B、Auntandnephew.C、Nieceanduncle.D、Aclientandasecretary.A
Innovation,theeffectiverecipeofprogress,hasalwayscostpeopletheirjobs.Overthepast30yearsthedigitalrevolutionh
最新回复
(
0
)