首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f′(ξ)(b—a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f′+(0)存在,且f
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f′(ξ)(b—a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f′+(0)存在,且f
admin
2018-12-29
61
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f′(ξ)(b—a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
=A,则f′
+
(0)存在,且f′
+
(0)=A。
选项
答案
(Ⅰ)作辅助函数φ(x)=f(x)—f(a)—[*](x—a),易验证φ(x)满足φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得至少有一点ξ∈(a,b),使φ′(ξ)=0,即 [*] 所以f(b)—f(a)=f′(ξ)(b—a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可知,存在ξ
x
0
∈(0,x
0
)[*](0,δ),使得 [*] 又由于[*]=A,对(1)式两边取x
0
→0
0
时的极限 [*] 故f′
+
(0)存在,且f′
+
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/FJM4777K
0
考研数学一
相关试题推荐
设z=z(x,y)是由方程Ф(cx-az,cy-bz)=0确定的隐函数,其中Ф(u,v)具有连续偏导数,则=______.
设f(x)、g(x)均为连续的可微函数,且x=yf(xy)dx+xg(xy)dy.若f(x)=φ’(x),求二元可微函数u(x,y),使得du=z.
设函数f(x)在区间[a,b]上连续,n>1为自然数,证明:
设曲线y=lnx,x轴及x=e所围成的均匀薄板的密度为1,求此薄板绕直线x=t旋转的转动惯量I(t),并求当t为何值时,I(t)最小?
求证:若向量a、b、c不共面,则向量a×b,b×c,c×a也不共面.
设函数f(x)在区间[a,b]上连续,且区域D={(x,y)|a≤x≤b,a≤y≤b},证明:[∫abf(x)dx]2≤(b-a)∫abf2(x)dx.
假设随机变量X和Y的联合概率密度为求概率P{X<Y);
每次从1,2,3,4,5中任取一个数,且取后放回,用bi表示第i次取出的数(i=1,2,3).三维列向量b=(b1,b2,b3)T,三阶方阵求线性方程组Ax=b有解的概率.
设三阶实对称矩阵A的特征值分别为0,1,1,是A的两个不同的特征向量,且A(α1+α2)=α2.求矩阵A;
设三阶实对称矩阵A的特征值分别为0,1,1,是A的两个不同的特征向量,且A(α1+α2)=α2.求参数a的值;
随机试题
利率平价理论片面强调________对汇率的决定作用。()
Duringastateofdeeprelaxation,severalphysiologicalchangestakeplaceinthebody:thebody’soxygenconsumptionisreduce
关于Wood灯检查正确的是
用腋表测量人的体温,高热的标准是
我国工程咨询公司在国际市场上可能遇到的经济方面的风险因素,有通货膨胀、外汇风险和()等。
项目部对脚手架进行检查与验收时,应参加验收的人员有()。
下列不属于我国依法执教的基本原则的是()。
为了抗日民族统一战线的坚持、扩大和巩固,中国共产党制定了“发展进步势力,争取中间势力,孤立顽固势力”的策略总方针。其中,争取中间势力需具备的条件是
数据库系统的数据完整性是指保证数据的( )。
A、 B、 C、 B(A)问题是询问时间段,却用距离回答,所以此项是错误的。(B)回答离家一个月左右,故为正确答案。(C)问题是询问时间段。却告知方向,所以此项是错误的。
最新回复
(
0
)