首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的每行元素之和为3,且秩r(A)=1,β=(-1,2,2)T. 求Anβ;
设3阶实对称矩阵A的每行元素之和为3,且秩r(A)=1,β=(-1,2,2)T. 求Anβ;
admin
2021-02-25
34
问题
设3阶实对称矩阵A的每行元素之和为3,且秩r(A)=1,β=(-1,2,2)
T
.
求A
n
β;
选项
答案
由已知A的特征值λ
1
=3,其对应的一个特征向量为α
1
=(1,1,1)
T
,又由r(A)=1,且A可相似对角化知A有二重特征值λ
2
=λ
3
=0.设其对应的特征向量为x=(x
1
,x
2
,x
3
)
T
,于是有(x,α
1
)=0,即x
1
+x
2
+x
3
=0,解得λ
2
=λ
3
=0对应的特征向量为 [*],k
1
,k
2
为不同时为0的任意常数. 取α
2
=(-1,1,0)
T
,α
3
=(-1,0,1)
T
,显然α
1
,α
2
,α
3
线性无关,于是β可由α
1
,α
2
,α
3
线性表示,即x
1
α
1
+x
2
α
2
+x
3
α
3
=β,解得x
1
=1,x
2
=1,x
3
=1. 故α
1
+α
2
+α
3
=β,所以 A
n
β=A
n
(α
1
+α
2
+α
3
)=A
n
α
1
+A
n
α
2
+A
n
α
3
=λ
n
1
α
1
+λ
n
2
α
2
+λ
n
3
α
3
=3
n
α
1
. =(3
n
,3
n
,3
n
)
T
.
解析
本题考查矩阵的幂运算.
转载请注明原文地址:https://kaotiyun.com/show/FZ84777K
0
考研数学二
相关试题推荐
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
设n阶方阵A的,n个特征值全为0,则().
设A,B是n阶可逆矩阵,且A~B,则①A-1~B-1;②AT~BT;③A*~B*;④AB~BA.其中正确的个数是()
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
(2008年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
设3阶矩阵A的特征值为2,3,λ.如果|2A|=-48,则λ=______.
随机试题
下列哪种激素的分泌不受腺垂体的控制
深度为15m的人工挖孔桩工程,()。
不符合终止经营定义的持有待售的非流动资产或处置组,其减值损失和转回金额及处置损益应当作为持续经营损益列报。()
住宅专项维修资金是指专项用于住宅()保修期满后的维修和更新、改造的资金。
【2012年烟台市市直】群体发展的最高阶段是()。
标志着我国剥削制度被消灭的历史事件是
中共十八届四中全会通过的《中共中央关于全面推进依法治国若干重大问题的决定》提出,坚持依法治国首先要坚持依宪治国,坚持依法执政首先要坚持依宪执政。中国特色社会主义政治最本质的特征、社会主义法治的最根本保证是()
=________.
微机的主机指的是_______。
SoapOperasAsoapoperaisaserialontelevisionorradio/whereeachepisodelinkstothenextepisode./Soyou’rea
最新回复
(
0
)