首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的每行元素之和为3,且秩r(A)=1,β=(-1,2,2)T. 求Anβ;
设3阶实对称矩阵A的每行元素之和为3,且秩r(A)=1,β=(-1,2,2)T. 求Anβ;
admin
2021-02-25
39
问题
设3阶实对称矩阵A的每行元素之和为3,且秩r(A)=1,β=(-1,2,2)
T
.
求A
n
β;
选项
答案
由已知A的特征值λ
1
=3,其对应的一个特征向量为α
1
=(1,1,1)
T
,又由r(A)=1,且A可相似对角化知A有二重特征值λ
2
=λ
3
=0.设其对应的特征向量为x=(x
1
,x
2
,x
3
)
T
,于是有(x,α
1
)=0,即x
1
+x
2
+x
3
=0,解得λ
2
=λ
3
=0对应的特征向量为 [*],k
1
,k
2
为不同时为0的任意常数. 取α
2
=(-1,1,0)
T
,α
3
=(-1,0,1)
T
,显然α
1
,α
2
,α
3
线性无关,于是β可由α
1
,α
2
,α
3
线性表示,即x
1
α
1
+x
2
α
2
+x
3
α
3
=β,解得x
1
=1,x
2
=1,x
3
=1. 故α
1
+α
2
+α
3
=β,所以 A
n
β=A
n
(α
1
+α
2
+α
3
)=A
n
α
1
+A
n
α
2
+A
n
α
3
=λ
n
1
α
1
+λ
n
2
α
2
+λ
n
3
α
3
=3
n
α
1
. =(3
n
,3
n
,3
n
)
T
.
解析
本题考查矩阵的幂运算.
转载请注明原文地址:https://kaotiyun.com/show/FZ84777K
0
考研数学二
相关试题推荐
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
下列矩阵中两两相似的是
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且试证:(Ⅰ)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
依题意,如右图所示,D为右半单位圆,且关于x轴[*]
设f(x)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f’(a).f’(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
随机试题
以下关于报表的叙述不正确的是()。
独立自主和平外交政策的基本原则是()
患者,男性,30岁,不慎被车撞伤右腰部,神清,右腰疼痛,尿色红,首先应作的检查是
流行病学研究方法的核心特征是
定点零售药店审查和确定的原则是
关于个人所得税的自行纳税申报,下列表述正确的是( )。
为了解学生的总体表现和学生之间的个性差异,或比较群体学习成绩的优劣,采用()最合适。
下列诗词按其所描述的节气顺序排列正确的一项是:①孟冬寒气至,北风何惨栗。②池上秋又来,荷花关成子。③露湿寒塘草,月映清淮流。④家家麦饭美,处处菱歌长。
BehindcloseddoorsintheBavariantownofAnsbachanewfactoryistakingshape.【C1】______itwilluserobotsand【C2】______
例如:男:小王,帮我开一下门,好吗?谢谢!女:没问题。您去超市了?买了这么多东西。问:男的想让小王做什么?A开门√B拿东西C去超市买东西
最新回复
(
0
)