首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的每行元素之和为3,且秩r(A)=1,β=(-1,2,2)T. 求Anβ;
设3阶实对称矩阵A的每行元素之和为3,且秩r(A)=1,β=(-1,2,2)T. 求Anβ;
admin
2021-02-25
50
问题
设3阶实对称矩阵A的每行元素之和为3,且秩r(A)=1,β=(-1,2,2)
T
.
求A
n
β;
选项
答案
由已知A的特征值λ
1
=3,其对应的一个特征向量为α
1
=(1,1,1)
T
,又由r(A)=1,且A可相似对角化知A有二重特征值λ
2
=λ
3
=0.设其对应的特征向量为x=(x
1
,x
2
,x
3
)
T
,于是有(x,α
1
)=0,即x
1
+x
2
+x
3
=0,解得λ
2
=λ
3
=0对应的特征向量为 [*],k
1
,k
2
为不同时为0的任意常数. 取α
2
=(-1,1,0)
T
,α
3
=(-1,0,1)
T
,显然α
1
,α
2
,α
3
线性无关,于是β可由α
1
,α
2
,α
3
线性表示,即x
1
α
1
+x
2
α
2
+x
3
α
3
=β,解得x
1
=1,x
2
=1,x
3
=1. 故α
1
+α
2
+α
3
=β,所以 A
n
β=A
n
(α
1
+α
2
+α
3
)=A
n
α
1
+A
n
α
2
+A
n
α
3
=λ
n
1
α
1
+λ
n
2
α
2
+λ
n
3
α
3
=3
n
α
1
. =(3
n
,3
n
,3
n
)
T
.
解析
本题考查矩阵的幂运算.
转载请注明原文地址:https://kaotiyun.com/show/FZ84777K
0
考研数学二
相关试题推荐
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
下列矩阵中两两相似的是
设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且试证:(Ⅰ)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设f(x)在[a,b]上连续,在(a,b)内可导,且试证:对任意实数k,在(a,b)内存在一点ξ,使得
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
(1997年)已知且A2-AB=I,其中I是3阶单位矩阵。求矩阵B.
设三阶矩阵A的特征值为λ1=-1,λ2=,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=________
设三阶方阵A,B满足关系式A-1BA=6A+BA,且则B=__________。
随机试题
曲轴的主要损伤形式有_______、_______、_______及其他部位的损伤。其中最常见的是_______。
资料:某公司于2005年1月1日发行票面面值100000元、票面年利率为10%的5年期公司债券,规定每年1月1日和7月1日为付息日,债券发行时的市场利率为8%。要求:编制2005年12月31日确认应计利息和利息费用的会计分录;
简述心力衰竭发生的原因和诱因。
防止水传播性疾病发生的最有效方法是
最可能的诊断是关于肺源性心脏病胸部X线所见,下列哪项是错误的
丙氨酸-葡萄糖循环的作用是
在中国古代社会中,被作为教学的基本教材和科举考试的依据的是()
在人事科科长人选问题上,某局决定由单位全体工作人员投票产生,得票前三名作为候选人。每人只需在本局职工单上打勾即可。计票组发现,刚毕业的张浩没有打任何人的勾;凡是对赵杰打勾的人,于明对这些人都打了勾;没有得全票的人李紫露都打了勾。由此可以推出:
南北朝时期,统治者宣扬佛教或大肆毁佛,其根本原因是()。
A、Stopdeliveringflowers.B、Leavehisjobtoworkforher.C、Findajobattherestaurant.D、Bringherflowerseveryday.B
最新回复
(
0
)