首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,证明:对于x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
设f(x)在(a,b)内可导,证明:对于x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
admin
2019-03-12
98
问题
设f(x)在(a,b)内可导,证明:对于
x,x
0
∈(a,b)且x≠x
0
时,f’(x)在(a,b)单调减少的充要条件是
f(x
0
)+f’(x
0
)(x-x
0
)>f(x). (*)
选项
答案
充分性:设(*)成立,[*]x
1
,x
2
∈(a,b)且x
1
<x
2
,则 f(x
2
)<f(x
1
)+f’(x
1
)(x
2
-x
1
),f(x
1
)<f(x
2
)+f’(x
2
)(x
1
-x
2
). 两式相加可得[f’(x
1
)-f’(x
2
)](x
2
-x
1
)>0,于是由x
1
2知f’(x
1
)>f’(x
2
),即f’(x)在(a,b)单调减少. 必要性:设f’(x)在(a,b)单调减少.对于[*]x,x
0
∈(a,b)且x≠x
0
,由微分中值定理得 f(x)-[f(x
0
)+f’(x
0
)(x-x
0
)]=[f’(ξ)-f’(x
0
)](x-x
0
)<0, 其中ξ在x与x
0
之间,即(*)成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/FgP4777K
0
考研数学三
相关试题推荐
设X1,X2,X3,X4为来自总体N(0,σ2)(σ>0)的简单随机样本,则统计量的分布为().
当事件A与B同时发生时,事件C必发生,则下列结论正确的是().
设在区间[a,b]上,f(χ)>0,f′(χ)<0,f〞(χ)>0,令S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a),则().
设随机变量X1,X2,X3,X4相互独立且都服从标准正态分布N(0,1),已知对给定的α(0<α<1),数yα满足P{Y>yα}=a,则有
设D是以点A(1,1),B(—1,1),C(—1,—1)为顶点的三角形区域,则
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的基础解系,且矩阵A-6E不可逆。(Ⅰ)求齐次线性方程组(A-6E)x=0的通解:(Ⅱ)求正交变换x=Qy将二次型XTAx化为标准形;
随机变量X的概率密度f(x)=。随机变量Y=aX+b~N(0,1),则ab=________。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B一CTA—1C是否为正定矩阵,并证明结论。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1,是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
求曲线y=x2-2x与直线y=0,x=1,x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
随机试题
______Iamconcerned,itisimportanttogetajobfirst.
母猪难产,注射催产素后,产出仔猪软弱无力、可视黏膜发绀或苍白、呼吸极度微弱。与该病无关的因素是
天然蛋白质中含有的20种氨基酸的结构()。
患者,女,43岁。眩晕2个月,加重1周,昏眩欲仆,神疲乏力,面色白,时有心悸,夜寐欠安,舌淡,脉细。治疗应首选( )。
在注册会计师完成审计业务前,被审计单位提出将审计业务变更为保证程度较低的业务。下列各项变更理由中,注册会计师通常认为合理的有()。
李克强总理在十二届全国人大三次会议上所做的《政府工作报告》中指出,要提供更多优秀文艺作品,倡导全民阅读,建设(),提高国民素质。
社会意识的相对独立性表现为()
IfyouhavereallybeenstudyingEnglishforsolong,it’sabouttimeyou______abletowritelettersinEnglish.
TheTruthabouttheEnvironmentA)Formanyenvironmentalists,theworldseemstobegettingworse.Theyhavedevelopedahit-lis
TheAmericaneconomicsystemisorganizedaroundabasicallyprivate-enterprise,market-orientedeconomyinwhichconsumerslarg
最新回复
(
0
)