首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,证明:对于x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
设f(x)在(a,b)内可导,证明:对于x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
admin
2019-03-12
97
问题
设f(x)在(a,b)内可导,证明:对于
x,x
0
∈(a,b)且x≠x
0
时,f’(x)在(a,b)单调减少的充要条件是
f(x
0
)+f’(x
0
)(x-x
0
)>f(x). (*)
选项
答案
充分性:设(*)成立,[*]x
1
,x
2
∈(a,b)且x
1
<x
2
,则 f(x
2
)<f(x
1
)+f’(x
1
)(x
2
-x
1
),f(x
1
)<f(x
2
)+f’(x
2
)(x
1
-x
2
). 两式相加可得[f’(x
1
)-f’(x
2
)](x
2
-x
1
)>0,于是由x
1
2知f’(x
1
)>f’(x
2
),即f’(x)在(a,b)单调减少. 必要性:设f’(x)在(a,b)单调减少.对于[*]x,x
0
∈(a,b)且x≠x
0
,由微分中值定理得 f(x)-[f(x
0
)+f’(x
0
)(x-x
0
)]=[f’(ξ)-f’(x
0
)](x-x
0
)<0, 其中ξ在x与x
0
之间,即(*)成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/FgP4777K
0
考研数学三
相关试题推荐
设χ=rcosθ,y=rsinθ,则极坐标系(r,θ)中的累次积分f(rcosθ,rsinθ)dr可化为直角坐标系(χ,y)中的累次积分().
已知f′(χ),g′(χ),且f(0)=g(0)=0,试求.
差分方程yχ+1-的通解为_______.
设f(x)在x=0处连续,且则曲线y=f(x)在点(0,f(0))处的切线方程为________.
已知A是3阶矩阵,A的特征值为1,—2,3.则(A*)*的特征值为________.
设总体X的概率密度为f(x;θ)=X1,…,Xn为来自总体X的简单随机样本。(Ⅰ)求θ的矩估计量;(Ⅱ)求。
讨论线性方程组的解的情况,在线性方程组有无穷多解时,求其通解。
设有n台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,…,n).用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,…,Xn.设E(Xi)=θ(i=1,2,…,n),问k1,k2,…,kn应取何值,才能在使用
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于()
随机试题
函数y=3e2x是微分方程yn-4y’=0的()
维多利亚蓝染色法的注意事项不包括
有关流行性出血热多尿期的描述,下列哪项是错误的( )
非货币性资产交换是指交易双方主要以存货、固定资产、无形资产和长期股权投资等非货币性资产进行的交换,不涉及货币性资产。()
2001年全省一次能源生产量为( )。与2002年相比,该省下列哪种能源生产的增长幅度最大( )。
如果将中心位置的机场附近的空域仅限于商用和那些装备了雷达的私人飞机使用,私人飞机的绝大部分将被迫使用偏远的机场。这种私人飞机流量的减少将降低在中心位置的机场附近发生空中撞击的危险。上述结论依赖以下哪个假设?
明代嘉靖年间,()采用了丝竹乐器伴奏,有别于其他南戏声腔。嘉靖、隆庆年间,经过魏良辅等一批音乐家对其全面改革,发展为委婉细腻的“水磨调”。
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
设S是平面x+y+z=4被圆柱面x2+y2=1截出的有限部分,则曲面积分的值是
不同逻辑子网间通信必须使用的设备是()。
最新回复
(
0
)