首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,证明:对于x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
设f(x)在(a,b)内可导,证明:对于x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
admin
2019-03-12
84
问题
设f(x)在(a,b)内可导,证明:对于
x,x
0
∈(a,b)且x≠x
0
时,f’(x)在(a,b)单调减少的充要条件是
f(x
0
)+f’(x
0
)(x-x
0
)>f(x). (*)
选项
答案
充分性:设(*)成立,[*]x
1
,x
2
∈(a,b)且x
1
<x
2
,则 f(x
2
)<f(x
1
)+f’(x
1
)(x
2
-x
1
),f(x
1
)<f(x
2
)+f’(x
2
)(x
1
-x
2
). 两式相加可得[f’(x
1
)-f’(x
2
)](x
2
-x
1
)>0,于是由x
1
2知f’(x
1
)>f’(x
2
),即f’(x)在(a,b)单调减少. 必要性:设f’(x)在(a,b)单调减少.对于[*]x,x
0
∈(a,b)且x≠x
0
,由微分中值定理得 f(x)-[f(x
0
)+f’(x
0
)(x-x
0
)]=[f’(ξ)-f’(x
0
)](x-x
0
)<0, 其中ξ在x与x
0
之间,即(*)成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/FgP4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn,…为独立同分布序列,且Xi服从参数为的指数分布,则当n充分大时,Zn=近似服从_______.
设箱中有5件产品,其中3件是优质品.从该箱中任取2件,以X表示所取的2件产品中的优质品件数,y表示箱中3件剩余产品中的优质品件数.(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求Cov(X,Y).
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Aχ=β的通解为(-1,1,0,2)T+k(1,-1,2,0)T,则(Ⅰ)β能否由α1,α2,α3线性表示?为什么?(Ⅱ)求α1,α2,α3,α4,β的一个极大
设A是5×4矩阵,r(A)=4,则下列命题中错误的为
已知幂级数(x—a)n在x>0时发散,且在x=0时收敛,则
设总体X的概率密度为f(x;θ)=X1,…,Xn为来自总体X的简单随机样本。(Ⅰ)求θ的矩估计量;(Ⅱ)求。
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0。证明:(Ⅰ)存在一点ξ∈(a,b),使得f’(ξ)=2f(ξ);(Ⅱ)存在一点η∈(a,b),使得f’(η)=-3f(η)g’(η)。
设A,B为随机事件,且,令(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
设求A-1.
设二维非零向量α不是二阶方阵A的特征向量.若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
随机试题
下列药物中对胎儿无害的是()
甲公司委派业务员张某去乙公司采购大蒜,张某持盖章空白合同书以及采购大蒜授权委托书前往。甲、乙公司于2010年3月1日签订大蒜买卖合同,约定由乙公司代办托运,货交承运人丙公司后即视为完成交付。大蒜总价款为100万元,货交丙公司后甲公司付50万元货款
下列哪项不是城市开放空间系统的概念?
某工程,施工总承包单位依据施工合同约定,与甲安装单位签订了安装分包合同。基础工程完成后,由于项目用途发生变化,建设单位要求设计单位编制设计变更文件,并授权项目监理机构就设计变更引起的有关问题与总承包单位进行协商。项目监理机构在收到经相关部门重新审查批准的设
工程师直接向分包人发布了错误指令,分包人经承包人确认后实施,但该错误指令导致分包工程返工,为此分包人向承包人提出费用索赔,承包人( )。
背景资料: 某机电安装公司承建某厂锅炉房工程安装任务。该锅炉房的机电设备安装工程由业主发包,工程项目的原施工进度双代号网络计划如下图所示,该工程总工期为18个月。 在上述网络计划中,工作C、F、J三项工作均为锅炉安装。在工程按计划进行4个月后(已完
平等协商与作为订立集体合同程序的集体协商的区别在于()。
高房价、高医药费完全打乱了正常的家庭消费结构。由于远期支出的不确定性,人们只好在近期扩大储蓄,以规避可能的社会风险。在当前经济形势下,这一状况()。
依据《继承法》,丧偶儿媳在何种情形下可以作为公婆的第一顺序继承人?()
Two-wayDiscussionWe’vebeentalkingaboutanoutdooractivityyouenjoyandnowI’dliketodiscusswithyouoneortwomo
最新回复
(
0
)