首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组 (Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组 (Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
admin
2015-07-22
30
问题
设向量组(Ⅰ)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,若向量组(Ⅰ)与向量组 (Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α
1
,α
2
,α
3
,α
5
一α
4
的秩为4.
选项
答案
因为向量组(Ⅰ)的秩为3,所以α
1
,α
2
,α
3
线性无关,又因为向量组(Ⅱ)的秩也为3,所以向量α
4
可由向量组α
1
,α
2
,α
3
线性表示.因为向量组(Ⅲ)的秩为4,所以α
1
,α
2
,α
3
,α
5
线性无关,即向量α
5
不可由向量组α
1
,α
2
,α
3
线性表示,故向量α
5
一α
4
不可由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,α
5
一α
4
线性无关,于是向量组α
1
,α
2
,α
3
,α
5
一α
4
的秩为4.
解析
转载请注明原文地址:https://kaotiyun.com/show/GBw4777K
0
考研数学一
相关试题推荐
设z=arctany2/2,则dz=________.
求曲线y=f(x)=(x3+x2-2)/(x2-1)的渐近线.
设f(x)在[0,2]上连续,在(0,2)内可导,且f(0)=1,f(1)+2f(2)=3,证明:存在ξ∈(0,2),使得f’(ξ)=0.
设曲线y=xn在点(1,1)处的切线交x轴于点(ξn,0),求
曲线ex+y-sin(xy)=e在点(0,1)处的切线为________.
设f(x)为奇函数,且f’(1)=2,则d/dxf(x3)|x=-1=________.
设f(x)在[a,b上二阶可导且f"(x)>0,证明:f(x)在(a,b)内为凹函数.
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在且非零,证明:存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f’(η)ln2.
求微分方程y"-y’-6y=0的通解.
随机试题
阅读《冯谖客孟尝君》中的一段文字,然后回答问题。长驱到齐,晨而求见。孟尝君怪其痰也,衣冠而见之,曰:“责毕收乎?来何疾也!”曰:“收毕矣。”“以何市而反?”冯谖曰:“君之‘视吾家所寡有者’。臣窃计,君宫中积珍宝,狗马实外厩,美人充下陈。君家所寡有者,以义
A.快速、精确而短暂B.快速、粗糙而广泛C.缓慢、持久而弥散D.缓慢、迟钝而局限E.相对局限和不灵敏体液调节的一般特点是
A.灼烧法B.压力蒸汽灭菌法C.紫外线消毒法D.干热灭菌法E.过滤除菌法生物安全柜内空气与物体表面的消毒
女性,32岁。因不明原因发热2周来院门诊,体检心脏有杂音。拟诊感染性心内膜炎入院。哪种心脏瓣膜病变最易发生感染性心内膜炎
心与肝的关系主要表现在()
建立养老基金,即企业参加一个具有独立法人资格的养老基金会来办理其养老金计划。养老基金会(又称养老信托基金)是一个独立的、()的法人实体(基金法人)。
可视为生产物流系统的终点,也是销售物流系统起点的是()。
国企改革的大幕已经拉开并驶入快车道,在全国启动的新一轮改革中,国企改革有望一路________,成为引领、推动改革的排头兵。填入画横线部分最恰当的一项是:
女性专用停车位在国外早已不是新鲜事物。虽然和国内一样,也一直伴随着________,但不同的是,国外的女性专属停车位并非拓宽车位宽度那么简单,而是在车位位置的选择、摄像监控等方面综合衡量,主要是为了女性安全考虑。这种考虑更实际、更全面的思路和举措,或许才是
Additionalsocialstressesmayalsooccurbecauseofthepopulationexplosionorproblemsarisingfrommassmigrationmovements—
最新回复
(
0
)