首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______.
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______.
admin
2019-08-11
61
问题
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______.
选项
答案
1
解析
由(a+1)+2(a-2)+3(a-1)=0得a=1.
转载请注明原文地址:https://kaotiyun.com/show/GCN4777K
0
考研数学二
相关试题推荐
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵证明C可逆的充分必要条件是A,B都可逆.
设α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10).①求r(α1,α2,α3,α4,α5).②求一个最大线性无关组,并且把其余向量用它线性表示.
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
设n>0,n元齐次方程组AX=0的系数矩阵为(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
当A=()时,(0,1,-1)和(1,0,2)构成齐次方程组AX=0的基础解系.
设A,B是3阶矩阵,A可逆,它们满足2A-1B=B-4E.证明A-2E可逆.
求函数的单调区间,极值点,凹凸性区间与拐点.
设z=f(u,v,x),u=φ(x,y),v=ψ(y)都是可微函数,求复合函数z=f(φ(x,y),ψ(y),x)的偏导数
求下列变限积分函数的导数:(Ⅰ)F(x)=∫2xln(x+1),求F’(x)(x≥0);(Ⅱ)设f(x)处处连续,又f’(0)存在,F(x)=∫1x[∫0tf(t)du]dt,求F’’(x)(-∞<x<+∞).
随机试题
甲向乙借款30万元,借期为3年。丙为该借款提供保证担保,担保条款约定,丙在甲不能履行债务时承担保证责任,但未约定保证期间。甲同时以自己的房屋提供抵押担保并办理了登记。抵押期间,丁向甲表示愿意以75万元购买甲的房屋。在抵押期间,乙放弃对甲的抵押权,但遭到丙的
良性肿瘤的最显著特点是
女性,34岁,门诊诊断为肛裂,查体发现肛门外“前哨痔”,肛乳头肥大水肿,之前未行任何治疗,则其治疗方法不包括
慢性支气管炎急性发作期治疗,下列各项中不恰当的是
关于照片对比度的叙述,错误的是
一般木门窗刷调和漆工序中,在完成涂侧清油打底后,应当进行的下一工序为()。
下列叙述正确的是()。
________是学生在教师指导下运用知识去完成一定的操作,并形成技能技巧的方法。
艺术离不开阐释,尤其是在批评性艺术这一_______,艺术就是为了批评的,所以它更是阐释的艺术,同时,这种阐释伴随着公民政治的_______。对一个当代艺术家来说,他对自己的作品既不能“不阐释”,也不能“过度阐释”,同时还要“有效阐释”,所以当代艺术家在阐
(1)Scienceiscommittedtotheuniversal.Asignofthisisthatthemoresuccessfulasciencebecomes,thebroadertheagreemen
最新回复
(
0
)