首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型xTAx=x12—5x22+x32+2ax1x2+2bx2x3+2x1x3的秩为2,(2,1,2)T是A的特征向量,那么经正交变换后二次型的标准形是________。
已知二次型xTAx=x12—5x22+x32+2ax1x2+2bx2x3+2x1x3的秩为2,(2,1,2)T是A的特征向量,那么经正交变换后二次型的标准形是________。
admin
2019-03-23
81
问题
已知二次型x
T
Ax=x
1
2
—5x
2
2
+x
3
2
+2ax
1
x
2
+2bx
2
x
3
+2x
1
x
3
的秩为2,(2,1,2)
T
是A的特征向量,那么经正交变换后二次型的标准形是________。
选项
答案
3y
1
2
—6y
3
2
解析
求二次型x
T
Ax在正交变换下的标准形也就是求二次型的矩阵A的特征值。由于
且(2,1,2)
T
是A的特征向量,则有
解得a=b=2,λ
1
=3。
由秩为2知,|A|=0,于是λ
2
=0是A的另一个特征值,再由
,有1+(—5)+1=3+0+λ
3
,则λ
3
= —6是A的另外一个特征值。于是可得,正交变换下二次型的标准形是3y
1
2
—6y
3
2
。
转载请注明原文地址:https://kaotiyun.com/show/GHV4777K
0
考研数学二
相关试题推荐
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为.①求A.②证明A+E是正定矩阵.
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
设α,β都是n维非零列向量,A=αβT.证明:A相似于对角矩阵βTα≠0.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T.(1)求(Ⅰ)的一个基础解系;(2)a为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解
已知齐次方程组(Ⅰ)解都满足方程x1+x2+x3=0,求a和方程组的通解.
二次型f(x1,x2,x3)=x12+ax22+x32+2x1x2+2x1x3+2x2x3的正惯性指数为2,a应满足什么条件?
判断下列函数的单调性:
求曲线y=+ln(1+ex)的渐近线方程.
求二次型f(χ1,χ2,χ3)=(χ1+χ2)2+(χ2-χ3)2+(χ3+χ1)2的秩,正负惯性指数p,q.
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。设目前农村人口与城镇人口相等,即。
随机试题
可编程序控制器输入部分的作用是处理所取得的信息,并按照被控对象实际的动作要求做出反应。()
女,40岁。胆道手术后,T管引流2周,拔管前先试行夹管1~2天,夹管期间应注意观察的内容是
《安全生产法》对安全生产危险性较大的行业进行了规定,矿山、建筑施工单位和危险物品的生产、经营、储存单位,应当()。
存货存在下列情形之一的(),通常表明存货的可变现净值为零。
一人有限责任公司应当在公司登记中注明自然人独资或者法人独资,并在公司营业执照中载明。()
在幼儿园中,教师要学会与幼儿沟通。比如,要熟记每个幼儿名字,这样幼儿会感到非常亲切,对教师的话作出积极反应;说话的语速和语调要恰当,最好能引发幼儿的好奇心;与幼儿交谈时,语言要简单明确,容易被幼儿接受;说话的态度要友善,比如:“我很喜欢听到你的描述,相信每
学生在学习了“四边形”的知识以后再学习菱形,这种学习属于()。
《诗经》:《国风》
ThedailycirculationoftheDailyMirrorandtheDailyExpressis______.
Whenwerethefirstx-raysdiscovered?
最新回复
(
0
)