首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明n阶实对称阵A是正交阵对任一n维列向量α,均有‖Aα‖=‖α‖.
证明n阶实对称阵A是正交阵对任一n维列向量α,均有‖Aα‖=‖α‖.
admin
2020-09-25
86
问题
证明n阶实对称阵A是正交阵
对任一n维列向量α,均有‖Aα‖=‖α‖.
选项
答案
必要性[*]:‖Aα‖
2
=(Aα,Aα)=(Aα)
T
Aα=α
T
A
T
Aα=α
T
α=‖α‖
2
,因此‖Aα‖=‖α‖. 充分性[*]:因为‖Aα‖=‖α‖对任一向量α都成立.我们取α=e
i
+e
j
,其中e
i
是第i个元素为1其他都是0的n维列向量. 则‖e
i
+e
j
‖
2
=‖A(e
i
+e
j
)‖
2
=(A(e
i
+e
j
))
T
A(e
i
+e
j
) =(Ae
i
)
T
Ae
i
+(Ae
j
)
T
Ae
j
+2(Ae
i
)
T
(Ae
j
) =‖Ae
i
‖
2
+‖Ae
j
‖
2
+2(Ae
i
)
T
(Ae
j
) =‖e
i
‖
2
+‖e
j
‖
2
+2(Ae
i
)
T
Ae
j
, 又因为‖e
i
+e
j
‖
2
=‖e
i
‖
2
+‖e
j
‖
2
+2e
i
T
e
j
,因此(Ae
i
)
T
Ae
j
=e
i
T
e
j
. 设A=(α
1
,α
2
,…,α
n
),则α
i
T
α
j
=(Ae
i
)
T
Ae
j
=e
i
T
e
j
=[*] 因此A的列向量组成一组标准正交基,因此A为正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/GPx4777K
0
考研数学三
相关试题推荐
设α=(1,-1,a)T是A=的伴随矩阵A*的特征向量,其中r(A*)=3,则a=__________
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P-1AP=__________。
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是__________.
已知,A*是A的伴随矩阵,那么A*的特征值是________。
已知方程组有无穷多解,那么a=_______
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
(2013年)当x→0时,1一cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值.
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明:(I)存在a>0,使得f(a)=1;(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
随机试题
阅读《宝黛吵架》中的一段文字,然后回答下列小题。谁知这个话传到宝玉黛玉二人耳内,他二人竟从来没有听见过“不是冤家不聚头”的这句俗话儿,如今忽然得了这句话,好似参禅的一般,都低头细嚼这句话的滋味儿,不觉的潸然泪下。虽然不曾见面,却一个在潇湘馆临风洒泪
蛋白质溶液的稳定因素是
女,63岁,脑卒中后右侧偏瘫就诊康复科,体格检查:神志清楚,言语清晰,左侧肢体活动自如。右侧上下肚肌张力增高,被动活动右上肢,在关节活动范围后50%范围内出现突然卡住,然后在关节活动范围的后50%均呈现最小的阻力;被动活动左、右下肢,在关节活动范围之末时出
能明显提高高密度脂蛋白HDL的药物是
某妇女,35岁,妊娠42周,临产10小时,检查:胎心音120次/分,宫口3cm,有水囊感,S=0,B超双顶径9cm,羊水深度2.5cm,其处理以下列哪项为最佳
建筑工地上用以拌制混合砂浆的石灰膏必须经过一定时间的陈伏,这是为了消除()的不利影响。
民事法律关系的终止,是指某类民事法律关系主体之间的权利义务不复存在,彼此丧失了( )。法律关系内容变更中,一方的权利增加,也就意味着另一方的( )。
下列物品不属于民用危险品的是()。
根据以下资料,回答以下问题。2012年1~8月,北京市开发区累计完成招商项目2730个,比上年同期增长21.5%:项目总投资,597.5亿元,同比下降13.4%;企业注册资本435.8亿元,同比下降7.7%;合同外资金额10.3亿美元,同比下降3
计算机软件可划分为系统软件和应用软件两大类,以下哪个软件系统不属于系统软件?
最新回复
(
0
)