首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明n阶实对称阵A是正交阵对任一n维列向量α,均有‖Aα‖=‖α‖.
证明n阶实对称阵A是正交阵对任一n维列向量α,均有‖Aα‖=‖α‖.
admin
2020-09-25
80
问题
证明n阶实对称阵A是正交阵
对任一n维列向量α,均有‖Aα‖=‖α‖.
选项
答案
必要性[*]:‖Aα‖
2
=(Aα,Aα)=(Aα)
T
Aα=α
T
A
T
Aα=α
T
α=‖α‖
2
,因此‖Aα‖=‖α‖. 充分性[*]:因为‖Aα‖=‖α‖对任一向量α都成立.我们取α=e
i
+e
j
,其中e
i
是第i个元素为1其他都是0的n维列向量. 则‖e
i
+e
j
‖
2
=‖A(e
i
+e
j
)‖
2
=(A(e
i
+e
j
))
T
A(e
i
+e
j
) =(Ae
i
)
T
Ae
i
+(Ae
j
)
T
Ae
j
+2(Ae
i
)
T
(Ae
j
) =‖Ae
i
‖
2
+‖Ae
j
‖
2
+2(Ae
i
)
T
(Ae
j
) =‖e
i
‖
2
+‖e
j
‖
2
+2(Ae
i
)
T
Ae
j
, 又因为‖e
i
+e
j
‖
2
=‖e
i
‖
2
+‖e
j
‖
2
+2e
i
T
e
j
,因此(Ae
i
)
T
Ae
j
=e
i
T
e
j
. 设A=(α
1
,α
2
,…,α
n
),则α
i
T
α
j
=(Ae
i
)
T
Ae
j
=e
i
T
e
j
=[*] 因此A的列向量组成一组标准正交基,因此A为正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/GPx4777K
0
考研数学三
相关试题推荐
方程组x1+x2+x3+x4+x5=0的基础解系是_________.
设A=,B为三阶非零矩阵,且AB=0,则r(A)=__________.
设4阶矩阵A与B相似,矩阵A的特征值为则行列式|B-1一E|=________。
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
设A=,B是3阶非零矩阵,且AB=O,则a=________
已知X=AX+B,其中求矩阵X.
(2013年)当x→0时,1一cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
李某女性,患慢性乙型肝炎10年。血化验:HBsAg(+),HBeAg(+),抗-HBcIgG(+)。其3岁女儿体检时血清抗-HBs(+),追问病史,无任何临床症状,未注射乙肝疫苗。李某女儿属于
租赁建设用地使用权的转让,只能是原建设用地使用权租赁合同规定的使用年限减去土地使用者已使用年限后剩余年限的建设用地使用权的转移。()
A公司是B公司的全资子公司,1999年12月1日A公司销售一台设备给B公司,该设备预计使用年限为5年,每年多提的折旧额为10000元,B公司在编制2001年的合并会计报表时,只需对该固定资产当年多计提的折旧额予以抵销,其抵销分录为:借:累计折旧10000;
导游、领队人员应做到“一岗双责”,其中“双责”是指导游、领队人员应做到()。
在中国历史上,被称为“画圣”的是:
"Ofthepeople,bythepeople,andforthepeople."That’showAbrahamLincolndescribedtheAmericangovernmentinhisGettysbu
假定有以下程序段:n=0fori=1to4forj=3to-1step-1n=n+1nextjnexti运行完毕后n的值是()。
下列4种不同数制表示的数中,数值最小的一个是______。
Itisanunderstoodfactthatwaterhelpsmobilizesolublenutrients,transportwastematerialsandregulatesbodytemperature.
In1915EinsteinmadeatriptoGottingentogivesomelecturesattheinvitationofthemathematicalphysicistDavidHilbert.H
最新回复
(
0
)