首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明n阶实对称阵A是正交阵对任一n维列向量α,均有‖Aα‖=‖α‖.
证明n阶实对称阵A是正交阵对任一n维列向量α,均有‖Aα‖=‖α‖.
admin
2020-09-25
89
问题
证明n阶实对称阵A是正交阵
对任一n维列向量α,均有‖Aα‖=‖α‖.
选项
答案
必要性[*]:‖Aα‖
2
=(Aα,Aα)=(Aα)
T
Aα=α
T
A
T
Aα=α
T
α=‖α‖
2
,因此‖Aα‖=‖α‖. 充分性[*]:因为‖Aα‖=‖α‖对任一向量α都成立.我们取α=e
i
+e
j
,其中e
i
是第i个元素为1其他都是0的n维列向量. 则‖e
i
+e
j
‖
2
=‖A(e
i
+e
j
)‖
2
=(A(e
i
+e
j
))
T
A(e
i
+e
j
) =(Ae
i
)
T
Ae
i
+(Ae
j
)
T
Ae
j
+2(Ae
i
)
T
(Ae
j
) =‖Ae
i
‖
2
+‖Ae
j
‖
2
+2(Ae
i
)
T
(Ae
j
) =‖e
i
‖
2
+‖e
j
‖
2
+2(Ae
i
)
T
Ae
j
, 又因为‖e
i
+e
j
‖
2
=‖e
i
‖
2
+‖e
j
‖
2
+2e
i
T
e
j
,因此(Ae
i
)
T
Ae
j
=e
i
T
e
j
. 设A=(α
1
,α
2
,…,α
n
),则α
i
T
α
j
=(Ae
i
)
T
Ae
j
=e
i
T
e
j
=[*] 因此A的列向量组成一组标准正交基,因此A为正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/GPx4777K
0
考研数学三
相关试题推荐
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T线性表出,则a=______.
已知方程组有无穷多解,那么a=_______
设A是n阶矩阵,对于齐次线性方程组Ax=0,如果矩阵A中的每行元素的和均为0,且r(A)=n-1,则方程组的通解是______
设矩阵A与B=相似,则r(A)+r(A一2E)=________。
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
已知X=AX+B,其中求矩阵X.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
随机试题
《先妣事略》的艺术特色是()
前腭杆的前缘应
若借款企业预测市场利率将下降,则应与银行签订( )。
单因素敏感性分析的步骤中,如果主要分析产品价格波动对技术方案超额净收益的影响,则可选用()作为分析指标。
承插式室外消火栓公称压力为()MPa。
作用在结构上是一个点或作用面积很小的荷载是()。
个人汽车贷款咨询的主要内容包括()。
已知函数f(x),当x≠0时,且f(0)=一1,则f(x)().
CountrieswithintheEuropeanCommunitygrantcertaincommercial______toeachother.
Somewordsinthebasicwordstockaresaidtobestablebecausethey_____.
最新回复
(
0
)