首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕z轴旋转而成.[img][/img] 求S1与S2的方程;
[2009年] 椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕z轴旋转而成.[img][/img] 求S1与S2的方程;
admin
2019-04-08
85
问题
[2009年] 椭球面S
1
是椭圆
绕x轴旋转而成,圆锥面S
2
是过点(4,0)且与椭圆
相切的直线绕z轴旋转而成.[img][/img]
求S
1
与S
2
的方程;
选项
答案
椭圆L:[*]绕x轴旋转而成的椭球面S
1
的方程为 [*] 在曲线L上任意点(x
0
,y
0
)处的切线斜率为[*],相应的切线方程为 [*] 令x=4,y=0,得对应的切点(x
0
,y
0
)满足 [*] 即[*] 又[*],故x
0
=1,y
0
=[*].于是所求直线(即切线)方程是[*],相应的圆锥面S
2
的方程为[*],即y
2
+z
2
=(x-4)
2
/4.
解析
转载请注明原文地址:https://kaotiyun.com/show/GR04777K
0
考研数学一
相关试题推荐
函数F(x)=1/(1+x2)是否可作为某一随机变量的分布函数,如果(1)-∞
设空间曲线C由立体0≤x≤1,0≤y≤1,0≤z≤1的表面与平面x+y+z=所截而成,计算|(z2-y2)dx+(x2-z2)dy+(y2-x2)dz|.
设z=f(x,y,u),其中f具有二阶连续偏导数,u(x,y)由方程u3-5xy+5u=1确定.求.
设函数z=f(μ),方程μ=φ(μ)+∫yxP(t)dt确定μ为x,y的函数,其中f(μ),φ(μ)可微,P(t),φ’(μ)连续,且φ’(μ)≠1,求.
设A为m阶实对称阵且正定,B为m×n实矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
已知齐次线性方程组=有非零解,且矩阵是正定矩阵.(1)求a的值;(2)求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:y=x2/2,P点的坐标为(1/2,1)
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:y=x2/2,P点的坐标为(1/2,1)
设二次型f(x1,x2,x3)=x12+4x22+2x32+2tx1x2+2x1x3为正定二次型,求t的范围.
(2004年)设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛.
随机试题
简述法约尔管理组织理论的意义和缺陷。
下列有关DNA二级结构的叙述哪一项是不正确的
关于注射剂特点的叙述不正确的是
某化工生产企业(一般纳税人),兼营出口业务与内销业务。2011年10月、11月发生以下业务:(1)10月份业务如下:①国内采购原材料,取得防伪税控系统开具的增值税专用发票,注明增值税额14.45万元,发票已经税务机关认证,材料已验收入库
下列不属于贷前调查主要对象的是()。
某毛巾厂几十年来一直只生产毛巾,产品质量卓越,顾客群体稳定。目前,为了扩大经营规模,企业增加了沐浴液生产,需要确定沐浴液的质量,根据预测,可知这种沐浴液市场状况的概率是畅销为0.3,一般为0.5,滞销为0.2。沐浴液产品生产采取大、中、小三种批量的生产方案
购买国债虽然违约风险小,也几乎没有破产风险,但仍会面临利息率风险和购买力风险。()
在面向对象方法中,不属于“对象”基本特点的是
A—AnE-mailAccountB—WebSiteDesignC—IdentifyingYourAudienceD—SelectingaDomainNameE—AffiliateProgramsF—CustomerRese
Ifitwereonlynecessarytodecidewhethertoteachelementarysciencetoeveryoneontheamass【B1】______ortofindthegifte
最新回复
(
0
)