首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x)在[a,b]上非负连续,f(x)与g(x)在[a,6]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b),比较I1=∫∫Dp(x)f(x)p(y)g(y)dxdy与I2=∫∫Dp(x)f(y)p(y)g(y)dxdy的大小,并
设p(x)在[a,b]上非负连续,f(x)与g(x)在[a,6]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b),比较I1=∫∫Dp(x)f(x)p(y)g(y)dxdy与I2=∫∫Dp(x)f(y)p(y)g(y)dxdy的大小,并
admin
2016-07-22
49
问题
设p(x)在[a,b]上非负连续,f(x)与g(x)在[a,6]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b),比较I
1
=∫∫
D
p(x)f(x)p(y)g(y)dxdy与I
2
=∫∫
D
p(x)f(y)p(y)g(y)dxdy的大小,并说明理由.
选项
答案
I
1
-I
2
=[*]p(x)p(y)g(y)[f(x)-f(y)]dxdy, 由于D关于x与y对称,所以I
1
-I
2
又可以写成 [*] 因g(x)与f(x)的单调性相同,所以[f(x)-f(y)][g(x)-g(y)]≥0,从而知I
1
-I
2
≤0,有I
1
≤I
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/GYw4777K
0
考研数学一
相关试题推荐
设f(x)可导,y=f(cos2x),当x=-π/4处取增量△x=-0.2时,△y的线性部分为0.2,求f’(1/2).
求下列函数的的二阶偏导数.z=x4sin2y;
函数z=x2-y2在点A(1,1)处沿与x轴正向组成角α=60°的方向l的方向导数为().
设函数z=f(x,y)在点P0(x0,y0)处存在二阶偏导数,则函数在点P0处必有().
设函数P(x),q(x),f(x)在区间(a,b)上连续,y1(x),y2(x),y3(x)是二阶线性微分方程y”+P(x)y’+q(x)y=f(x)的三个线性无关的解,c1,c2为两个任意常数,则该方程的通解是().
设三阶常系数齐次线性微分方程有特解y1=eχ,y2=2χeχ,y3=3e-χ,则该微分方程为().
(I)设0﹤x﹤﹢∞,证明存在η,0﹤η﹤1,使(Ⅱ)求出(I)中η关于x的具体函数表达式η=η(x),并求出当0﹤x﹤﹢∞时,函数η(x)的值域.
设A=[α1,α2,α3,α4],且η1=[1,1,1,1]T,η2=[0,1,0,1]T是齐次线性方程组Ax=0的基础解系,则().
关于函数f(x,y)=给出以下结论:①|(0,0)=1;②|(0,0)=1;③f(x,y)=0;④f(x,y)=0.其中,正确的个数是().
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
随机试题
科学家在克隆某种家蝇时,改变了家蝇的某单个基因,如此克隆出的家蝇不具有紫外视觉,因为它们缺少使家蝇具有紫外视觉的眼细胞。而同时以常规方式(未改变基因)克隆出的家蝇具有正常的视觉。科学家由此表明,不具有紫外视觉的这种家蝇必定在这个基因上有某种缺陷或损坏。
计量资料的统计描述指标包括()
I【C1】______untilthevice-presidentwentbacktohisofficeandknockedonhisdoor.SinceItaughtcollaboration,Idecidedto
在桥梁工程施工中,预应力混凝土工程计量时,完工并经验收的预应力混凝土结构的预应力钢材,按图纸所示或预应力钢材表所列数量以千克计量。后张法预应力钢材的长度按两端锚具间的理论长度计算;先张法预应力钢材的长度按构件的长度计算。()
提前支取的定期储蓄存款,支取部分按()计可付利息。[2011年10月真题]
根据《担保法》规定,办理财产抵押贷款的,除签订抵押合同外,还应()才能取得贷款。
唯物辩证法认为,整体处于统帅的决定地位,部分服从和服务于整体。部分是整体中的部分,部分离不开整体,离开了整体,部分也就不称其为部分。因此,大局的走向决定局部的命运。正因为大局在事物发展中起着主导的决定作用,找准全局性、大局性的问题,也就抓住了工作的重点和中
衡量普通股股东当期收益率的指标是()。
DB2通用数据库为解决所有平台上的异构数据库之间的访问,提供了【】解决方案。
关系模式规范化过程中,若要求分解保持函数依赖,那么模式分解一定可以达到3NF,但不一定能达到______。
最新回复
(
0
)