首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上可导,f(0)=1,且f’(x)一f(x)+∫0xf(t)dt=0,求 ∫[f"(x)一f’(x)]e—xdx.
设f(x)在[0,+∞)上可导,f(0)=1,且f’(x)一f(x)+∫0xf(t)dt=0,求 ∫[f"(x)一f’(x)]e—xdx.
admin
2017-07-26
76
问题
设f(x)在[0,+∞)上可导,f(0)=1,且f’(x)一f(x)+
∫
0
x
f(t)dt=0,求
∫[f"(x)一f’(x)]e
—x
dx.
选项
答案
由题设知,f’(x)一f(x)+[*]∫
0
x
f(t)dt=0,并且f’(0)=f(0)=1.于是,有 (1+x)f’(x)一(1+x)f(x)+∫
0
x
f(t)dt=0. 两边对x求导得 f’(x)+(1+x)f"(x)一f(x)一(1+x)f’(x)+f(x)=0. 即(1+x)f"(x)一xf’(x)=0. 令f’(x)=p,则有(1+x)p’一xp=0. [*] ln|p|=x—ln(1+x)+ln|c|, [*] 由f’(0)=1,得c=1.代入上式得,p=f’(x)=[*].故 ∫[f"(x)一f’(x)]e
—x
dx=∫f"(x)e
—x
dx一∫f’(x)e
—x
dx =f’(x)e
—x
+∫f’(x)e
—x
dx—∫f’(x)e
—x
dx =f’(x)e
—x
+c=[*]+c.
解析
∫[f"(x)一f’(x)]e
—x
dx=∫f(x)e
—x
dx—∫f’(x)e
—x
dx
=f’(x)e
—x
+∫f’(x)e
—x
dx—∫f’(x)e
—x
dx
=f’(x)e
—x
+c.
计算该积分的关键是求f’(x).
转载请注明原文地址:https://kaotiyun.com/show/GwH4777K
0
考研数学三
相关试题推荐
设有一平面温度场T(x,y)=100-x2-2y2,场内一粒子从A(4,2)处出发始终沿着温度上升最快的方向运动,试建立粒子运动所应满足的微分方程,并求出粒子运动的路径方程.
设随机变量X,Y的概率分布相同,X的概率分布为P{X=0}=1/3,P{X=1}=2/3,且X与Y的相关系数ρxy=1/2.(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}.
设y=y(x)是由方程y2+xy+x2+x=0所确定的满足y(一1)=1的隐函数,则
设a1,a2,…,as均为n维向量,下列结论不正确的是().
设A,B是二随机事件;随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.
把图2.15中各条曲线与下面的说明对应起来.(1)一杯放在餐桌上的冰水的温度(室温高于0℃);(2)在计算连续复利的银行账户中存入一笔现金后,此账户中钱的数目;(3)匀减速运动的汽车的速度;(4)从加热炉中取出使其自然冷却的钢的温度.
设随机变量X的数学期望E(X)=μ,方差D(X)=σ2,则由切比雪夫不等式,有P{|X一μ|≥3σ)≤_____.
n阶方阵(一∞,0)U(0,+∞),当a≠b且a≠一(n一1)b时,秩A=_____
设二维随机变量(X,Y)服从二维正态分布,则下列说法不正确的是().
已知线性方程Ax=β的增广矩阵可化为且方程组有无穷多解,则参数A的取值必须满足().
随机试题
男青年腰椎骨折后走路正常,大、小便失禁,应考虑
输卵管妊娠时判断胚胎死亡的可靠依据是
下列关于再生障碍性贫血的检查结果,错误的是
环甲膜切开术后插管时间最长不宜超过
某果汁加工厂为增值税一般纳税人,2013年8月,外购的一批免税农产品因管理不善全部毁损,账面成本22620元,外购库存的一批包装物因发生自然灾害全部毁损,账面成本32000元,农产品和包装物的进项税额均已抵扣,该加工厂2013年8月应转出进项税额(
下列关于继子女的遗产继承权,说法不正确的是()。
ABadIdeaThinkyoucanwalk,drive,takephonecalls,e-mailandlistentomusicatthesametime?Well,NewYork’snewla
fearofpoverty
Silenceisunnaturaltoman.Hebeginslifewithacryandendsitinstillness.Intheintervalhedoesallhecantomakeano
Hestudiedthemapcarefully,tryingto______thenearestroutetothebeach.
最新回复
(
0
)