首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
(1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
admin
2017-08-07
58
问题
(1)问k为何值时A可相似对角化?
(2)此时作可逆矩阵U,使得U
-1
AU是对角矩阵.
选项
答案
(1)求A的特征值: [*] 于是A的特征值为1(一重)和一1(二重). 要使A可对角化,只需看特征值一1.要满足3一r(a+E)=2,即r(A+E)=1, [*] (2)求属于一1的两个线性无关的特征向量,即求(A+E)X=0的基础解系: [*] 得(A+E)X=0的同解方程组 2x
1
+x
2
一x
3
=0 得基础解系η
1
=(1,0,2)
T
,η
2
=(0,1,1)
T
. 求属于1的一个特征向量,即求(A—E)X=0的一个非零解: [*] 得(A—E)X=0的同解方程组 [*] 得解η
3
=(1,0,1)
T
. 令U=(η
1
,η
2
,η
3
),则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Usr4777K
0
考研数学一
相关试题推荐
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=E+(1/a)aaT,其中A的逆矩阵为B,则a=________.
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
设n阶矩阵A与B等价,则必有().
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0,试证存在ξ,η∈(a,b),使得
函数F(x)=的单调减少区间__________.
(2004年试题,二)设随机变量X服从正态分布N(0,1),对给定的α(0
(2002年试题,一)已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=______________.
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
(1999年试题,十三)设总体X的概率密度为其中X1,X2,…,Xn是取自总体X的简单随机样本.求θ的方差D().
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x13-6x2x3的矩阵合同于(Ⅰ)求常数a;(II)用正交变换法化二次型f(x1,x2,x3)为标准形.
随机试题
Thehighestanxietymomentintheholidayseasonmustbethemomentjustbeforeyourlovedonesunwraptheirgifts.Theribbonc
患者,男性,40岁。搬家公司员工,搬东西上楼后突然出现胸痛、干咳、呼吸困难。此时应进行的检查是
图4-1所示三力矢F1、F2、F3的关系是()。
1m3的普通砖所需砖的数量是()块。
根据《劳动法》,有( )情形之一的,劳动者可以随时通知用人单位解除劳动合同。
中方甲、乙和外方丙、丁共同投资设立了A中外合资经营企业(简称“A企业”);后乙与戊达成《股权转让协议》,将其持有的A企业全部股权转让给戊,并已经履行完毕;1年后,丁向人民法院提起诉讼,以乙转让股权未经其同意为由,请求人民法院撤销乙戊之间的股权转让协议,乙提
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是()。
下列关于闪存(FlashMemory)的叙述中,错误的是_______。
f(x)在[-1,1]上连续,则x=0是函数g(x)=的().
NootherValentine’sDaycanbecomparedwiththeonewhenIwasnineyearsold.
最新回复
(
0
)