首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
(1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
admin
2017-08-07
30
问题
(1)问k为何值时A可相似对角化?
(2)此时作可逆矩阵U,使得U
-1
AU是对角矩阵.
选项
答案
(1)求A的特征值: [*] 于是A的特征值为1(一重)和一1(二重). 要使A可对角化,只需看特征值一1.要满足3一r(a+E)=2,即r(A+E)=1, [*] (2)求属于一1的两个线性无关的特征向量,即求(A+E)X=0的基础解系: [*] 得(A+E)X=0的同解方程组 2x
1
+x
2
一x
3
=0 得基础解系η
1
=(1,0,2)
T
,η
2
=(0,1,1)
T
. 求属于1的一个特征向量,即求(A—E)X=0的一个非零解: [*] 得(A—E)X=0的同解方程组 [*] 得解η
3
=(1,0,1)
T
. 令U=(η
1
,η
2
,η
3
),则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Usr4777K
0
考研数学一
相关试题推荐
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
(2005年试题,19)设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.求函数φ(y)的表达式.
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
(2005年试题,17)如图1—3—2所示,曲线c的方程为y=f(x),A(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分
(2009年试题,21)设二次型f(x1,x2,x3)=a22+a22+(a一1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
(2012年试题,三)已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求正交变换x=Qy将f化为标准形.
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求矩阵A.
(2003年试题,十二)设总体X的概率密度为其中θ>0是未知参数,从总体x中抽取简单随机样本X1,X2,…,Xn,记θ=min(X1,X2,…,Xn)求统计量θ的分布函数Fθ(x);
已知三元二次型xTAx的平方项系数均为α,设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
随机试题
对于斜齿条检测时,应在齿的()上测量。
A.第Ⅰ时相B.第Ⅱ时相C.第Ⅲ时相D.第Ⅳ时相E.REM睡眠遗尿多发生在睡眠的
在Word编辑状态下,当前输入的文字显示在( )。
王明的退休账户里有600000元作为退休收入,如果这笔资金的年回报率是4%,从现在开始他每年提取38407元,那么这笔钱可以使用( )年。
在个人经营贷款中,为了有效规避抵押物价值变化带来的信用风险,商业银行可以采取的措施有()。
国家对()等特殊食品实行严格监督管理。
幼儿词汇量快速发展的时期是()
执行下面的程序段后,变量k中的值为()。intk=3,s[2];s[0]=k;k=s[0]*10;
苏共“二十大”
预订酒店宴会说明:假定你是秘书JaneSwift,写信给酒店预订宴会,并询问相关情况。内容:1.从报纸上读到该酒店的广告;2.公司计划12月15日晚上在西湖酒店开年会,要预订大约40人的宴会,请估算宴会大概费用:
最新回复
(
0
)