首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
(1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
admin
2017-08-07
25
问题
(1)问k为何值时A可相似对角化?
(2)此时作可逆矩阵U,使得U
-1
AU是对角矩阵.
选项
答案
(1)求A的特征值: [*] 于是A的特征值为1(一重)和一1(二重). 要使A可对角化,只需看特征值一1.要满足3一r(a+E)=2,即r(A+E)=1, [*] (2)求属于一1的两个线性无关的特征向量,即求(A+E)X=0的基础解系: [*] 得(A+E)X=0的同解方程组 2x
1
+x
2
一x
3
=0 得基础解系η
1
=(1,0,2)
T
,η
2
=(0,1,1)
T
. 求属于1的一个特征向量,即求(A—E)X=0的一个非零解: [*] 得(A—E)X=0的同解方程组 [*] 得解η
3
=(1,0,1)
T
. 令U=(η
1
,η
2
,η
3
),则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Usr4777K
0
考研数学一
相关试题推荐
设3阶矩阵A=,若A的伴随矩阵的秩等于1,则必有().
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
(2005年试题,一)设Ω是由锥面与半球面围成的空间区域,∑是Ω的整个边界的外侧,则
(2005年试题,19)设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.求函数φ(y)的表达式.
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
(2008年试题,20)设α,β为三维列向量,矩阵A=ααT+ββT,其中αT为α的转置,βT为β的转置.证明:rA≤2;
若f(一1,0)为函数f(x,y)=e-x(ax+b—y2)的极大值,则常数a,b应满足的条件是
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3,的负惯性指数为1,则a的取值范围是
设X服从参数为λ的指数分布,Y=min(X,2}.(1)求Y的分布函数;(2)求P{Y=2);(3)判断Y是否为连续型随机变量;(4)在{Y=2)的条件下,求{X>3}的概率.
袋中装有5个白球,3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取2球,用Xi表示第i次取到的白球数,i=1,2.(Ⅰ)求(X1,X2)的联合分布;(Ⅱ)求P{X1=0,X2≠0},P{X1X2=0};(Ⅲ)判断X
随机试题
当工人的平均操作技能水平较低时,宜采用工序集中法进行加工。()
男性,55岁。发热、呕吐、腹泻1天,烦躁不安、意识障碍1小时急诊入院。查体:T37.8℃,P90次/分,BP110/70mmHg,神志模糊,颈部及前胸皮肤可见蜘蛛痣,巩膜轻度黄染,心肺未见异常。腹软,肝肋下未触及,脾肋下2cm。血常规:Hb112g
以下不属于皮肤转移癌特点的是
只有通过()的投标文件才能参加详细评审。
()不能参与ETF的投资。
关于企业劳动争议处理的方式,下列说法错误的是()。
Thereareover6,000differentcomputerandonlinegamesintheworldnow.Asegmentofthemareconsideredtobebotheducation
在以下影响一国国际储备需求的因素中,与一国国际储备需求正相关的因素是()。
以下关于windows7文件名的叙述中,(20)________________是正确的。
根据数据分布形式,有同步和不同步数据的差别。以下数据形式中哪些数据具有这种性质?
最新回复
(
0
)