首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则( ).
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则( ).
admin
2018-05-25
40
问题
设α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
s
为两个n维向量组,且r(α
1
,α
2
,…,α
m
)=r(β
1
,β
2
,…,β
s
)=r,则( ).
选项
A、两个向量组等价
B、r(α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
s
)=r
C、若向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
s
线性表示,则两向量组等价
D、两向量组构成的矩阵等价
答案
C
解析
不妨设向量组α
1
,α
2
,…,α
m
的极大线性无关组为α
1
,α
2
,…,α
r
,向量组β
1
,β
2
,…,β
s
的极大线性无关组为β
1
,β
2
,…,β
r
,若α
1
,α
2
,…,α
m
可由β
1
,β
2
,…,β
s
线性表示,则α
1
,α
2
,…,α
r
也可由β
1
,β
2
,…,β
r
线性表示,若β
1
,β
2
,…,β
r
,不可由α
1
,α
2
,…,α
r
线性表示,则β
1
,β
2
,…,β
s
也不可由α
1
,α
2
,…,α
m
线性表示,所以两向量组秩不等,矛盾,选C.
转载请注明原文地址:https://kaotiyun.com/show/HEW4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,1]上二阶可导,且f(0)=fˊ(0)=fˊ(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|fˊˊ(ξ)|≥4.
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[fˊ(0)]2=4.试证:在(-2,2)内至少存在一点ξ,使得f(ξ)+fˊˊ(ξ)=0.
设In=(n>1).证明:(1)In+In-2=,并由此计算In;(2)
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,αs,β中任意s个向量线性无关.
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2-kα3,α3-α1也线性无关的充要条件是k_________.
已知矩阵相似.(1)求x与y;(2)求一个满足P-1AP=B的可逆矩阵P.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设A为n阶正定矩阵.证明:存在唯一正定矩阵H,使得A=H2.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αβT=0,记n阶矩阵A=αβT,求:(1)A2;(2)A的特征值和特征向量;(3)A能否相似于对角阵,说明理由.
随机试题
两台交换机分别具有12个和16个10/100Mbps全双工下联端口,它们的上联端口带宽至少应为()。
22岁男性患者,感冒后10天后出现双下肢浮肿伴乏力,血压155/105mmHg,尿蛋白(++),红细胞(++++),颗粒管型1~4个/HP,血肌酐106μmol/L,血红蛋白122g/L。本例临床表现符合
A、舟车丸B、保和丸C、枳实消痞丸D、木香槟榔丸E、枳实导滞丸具有行气导滞,攻积泄热功用的方剂是
骨囊肿好发于
与低常期相对应的动作电位时相是
某单位自用办公房产原值为100万元,其房产税税基可能为()万元。
下面属于著名作曲家舒伯特的作品的是()
当x→∞时,ln(1+[*])~1→x,可知[*]所以本题是“∞-∞”型.应先做变换,令t=1→x,则[*]
设矩阵,当a为何值时,存在可逆矩阵P,使得P-1AP=Λ,并求出此时的矩阵P和相应的对角矩阵Λ。
设曲线y=a+x-x3,其中a<0.当x>0时,该曲线在x轴下方与y轴、x轴所围成图形的面积和在x轴上方与x轴所围成图形的面积相等,求a.
最新回复
(
0
)