首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.
admin
2018-08-22
68
问题
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.
选项
答案
n≥r(B)≥r(AB)=r(E)=n[*]r(B)=n,则B的列向量组线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/HFj4777K
0
考研数学二
相关试题推荐
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的x0,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设h(t)为三阶可导函数,u=h(xyz),h(1)=fxy"(0,0),h’(1)=fyx"(0,0),且满足=x2y2z2h’"(xyz),求u的表达式,其中
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
汽艇以27(km/h)的速度,在静止的海面上行驶,现在突然关闭其动力系统,它就在静止的海面上作直线滑行,设已知水对汽艇运动的阻力与汽艇运动的速度成正比,并已知在关闭其动力后20(s)汽艇的速度降为了10.8(km/h).试问它最多能滑行多远?
设A为n阶方阵(n≥2),A*是A的伴随矩阵,试证:当r(A)=17,时,r(A*)=n;
设an为曲线y=xn与y=xn+1(n=1,2,…)所围区域的面积,记.求S1,S2的值.
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
随机试题
协助检查甲状腺功能时.关于饮食指导正确的是
下列可作为X线影像信息传递和接受介质的是
既能清热燥湿,又能泻肝胆火的药物是
A.中上腹痛、体重下降、贫血B.上腹痛、饥饿及夜间痛、进食后缓解C.上腹痛、呃逆D.反酸、胃灼热、胸骨后疼痛E.右上腹痛、黄疸、贫血十二指肠溃疡的典型临床表现
关于无障碍机动车停车位的说法,错误的是:[2017-61]
下列关于财产租赁所得应纳税额的计算公式,说法正确的是()。
C公司是一家冰箱生产企业,全年需要压缩机360000台,均衡耗用。全年生产时间为360天,每次的订货费用为160元,每台压缩机持有费率为80元,每台压缩机的进价为900元。根据经验,压缩机从发出订单到进入可使用状态一般需要5天,保险储备量为2000台。
下列各组字中,全是指事字的一组是()。
【2015.山东省属】李天升人初中后学业成绩“屡战屡败”,他表现得一点也不在乎,经常说“我就破罐子破摔了”“听天由命吧”一类的话,李天的状态被称为()。
A.recoverB.suggestedC.tipsPhrases:A.【T1】______thebalancebackto"yes"B.helppeople【T2】______fromdepressionandst
最新回复
(
0
)