首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…). (1)证明:fn(x)=1/[(n-1)!]∫0xf0(t)(x-t)n-1dt(n=1,2,…); (2)证明:fn(x)绝对收敛.
设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…). (1)证明:fn(x)=1/[(n-1)!]∫0xf0(t)(x-t)n-1dt(n=1,2,…); (2)证明:fn(x)绝对收敛.
admin
2022-08-19
53
问题
设函数f
0
(x)在(-∞,+∞)内连续,f
n
(x)=∫
0
x
f
n-1
(t)dt(n=1,2,…).
(1)证明:f
n
(x)=1/[(n-1)!]∫
0
x
f
0
(t)(x-t)
n-1
dt(n=1,2,…);
(2)证明:
f
n
(x)绝对收敛.
选项
答案
(1)n=1时,f
1
(x)=∫
0
x
f
0
(t)dt,等式成立; 设n=k时,f
k
(x)=1/[(k-1)!]∫
0
x
f
0
(t)(x-t)
k-1
dt, 103 则n=k+1时,f
k+1
(x)=∫
0
x
f
k
(t)dt=∫
0
x
dt∫
0
t
[1/(k-1)!]f
0
(u)(t-u)
k-1
du =[1/(k-1)!]∫
0
x
du∫
u
x
f
0
(u)(t-u)
k-1
dt =(1/k!)∫
0
x
f
0
(u)(t-u)
k
du, 由归纳法得f
n
(x)=[1/(n-1)!]∫
0
x
f
0
(t)(x-t)
n-1
dt(n=1,2,…). (2)对任意的x∈(-∞,+∞),f
0
(t)在[0,x]或[x,0]上连续,于是存在M>0(M与 x有关),使得|f
0
(t)|≤M(t∈[0,x]或t∈[x,0]),于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/HVR4777K
0
考研数学三
相关试题推荐
z=arctan2=_______.
(|x|+x2y)dxdy=________.
级数(a>0)().
设a1=2,an+1=(n=1,2,…).证明:(1)an存在;(2)级数收敛.
设an=,证明:{an}收敛,并求an.
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f’’(x)|≤M,证明:|f’(x)|≤
设则f(x)=()
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(x)+bf(2h)-f(0)当h→0时是比h高阶的无穷小,试确定a、b的值
随机试题
菲利普斯曲线
争名利,何年是彻。彻:
A.浸渍法B.渗漉法C.煎煮法D.回流法E.沙氏或索氏提取法
研究城市土地利用空间分布结构时,将城镇分为()。
计算机的数据输出设备主要有()、打印机、绘图仪等。
甲上市公司拟非公开发行股票,其发行方案的下列内容中,符合证券法律制度规定的是()。(2011年)
突发事件,是指突然发生,造成或者可能造成严重社会危害,需要采取应急处置措施予以应对的自然灾害、事故灾难、公共卫生事件和社会安全事件。为妥善处理突发事件,国家建立统一领导、综合协调、分类管理、分级负责、()管理为主的应急管理体制。
(2017·福建)“小明既聪明又勤奋”,该评价涉及的心理现象是()
《根特协定》
Notes:parade游行TheVillageofPouceCoupeofficewillreopenon________.
最新回复
(
0
)