首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种电子器件的使用寿命服从参数为λ=0.1(单位:小时-1)的指数分布,其使用情况是第一个损坏第二个立即使用,第二个损坏第三个立即使用,依次类推。已知每个器件为a元,那么在年计划中一年至少需要( )元才能有95%的概率保证够用(假定一年有306个工
设某种电子器件的使用寿命服从参数为λ=0.1(单位:小时-1)的指数分布,其使用情况是第一个损坏第二个立即使用,第二个损坏第三个立即使用,依次类推。已知每个器件为a元,那么在年计划中一年至少需要( )元才能有95%的概率保证够用(假定一年有306个工
admin
2019-03-25
20
问题
设某种电子器件的使用寿命服从参数为λ=0.1(单位:小时
-1
)的指数分布,其使用情况是第一个损坏第二个立即使用,第二个损坏第三个立即使用,依次类推。已知每个器件为a元,那么在年计划中一年至少需要( )元才能有95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时)。
选项
A、272。
B、272a。
C、326。
D、326a。
答案
B
解析
假设一年中需准备n个电子器件,并以X
i
表示第i个器件的寿命,i=1,2,…,n,则S
n
=
X
i
为n个器件的总寿命,由题意知,X
1
,X
2
,…独立同分布,且
E(X)=
=10,D(X)=
=100,i=1,2,…,n,
由列维一林德伯格定理,有
S
n
~N(nμ,nσ
2
)=N(10n,100n)。
于是
P{S
n
≥306×8}=P{S
n
≥2 448}=1一P{S
n
<2 448}=1一Φ
=1一
≥0.95,
查表得
≥1.65,即n一1.65√n一244.8≥0,解得√n≥16.492,n≥(16.492)
2
≈272。
因此在一年中至少准备272个电子器材,即在年计划中一年至少需要272a元才能有95%的把握保证够用。故选(B)。
转载请注明原文地址:https://kaotiyun.com/show/HW04777K
0
考研数学一
相关试题推荐
已知方程组无解,则a=________。
设A,B,C,D都是n阶矩阵,其中A可逆,构造两个2n阶矩阵:(Ⅰ)求HG;(Ⅱ)证明|H|=|A||B-DA-1C|。
设a是n维单位列向量,A=E-ααT,证明:R
(2013年)设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω。(I)求曲面∑的方程;(Ⅱ)求Ω的形心坐标。
(1998年)计算其中∑为下半球面的上侧,a为大于零的常数。
(2014年)设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上()
(1998年)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系。设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用。设仪器的质量为m,体积为B,海水比重为ρ,仪器所受
(2003年)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数。(I)试将x=x(y)所满足的微分方程变换为y=y(z)满足的微分方程;(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,的
(2004年)欧拉方程的通解为__________。
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。(Ⅰ)证明:r(A)=2;(Ⅱ)设β=α1+α2+α3,求方程组Ax=β的通解。
随机试题
异烟肼的不良反应表现为
以下关于因素与药物之间互相作用的表述中,说法正确的是()。
乙购买了一块昂贵的劳力士表后,到处炫耀。甲对此十分嫉妒。于是骗乙说要请他吃饭,在吃饭的时候将乙灌醉。等乙回家走到一僻静的路段时,甲迅速将乙的手表捋下拿走。甲的行为触犯的罪名有:()
狭义的投资银行业的范围包括()。
国家制定的规范性文件有()。
传统节目有了法定假期,未必就不会渐行渐远,一个古老节日之所以沿袭不衰真正原因不在于它有多热闹能带来多少商机,而在于它承载着中国人代代累积卜来的那份感情,流淌着中华民族赖以生存的精神血脉和文化基因,如今社会进步经济发展,人们对传统节日有了更高期待和要求,期待
伊克塔
Whatisthepurposeofthetalk?
Thiswatchisnotworthy______thegoldbelt.
TheultimateauthorityforCanada’sfiscalpolicyis______thehandsofthefederal,andtheprovincialgovernments.
最新回复
(
0
)