首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
admin
2021-02-25
42
问题
λ取何值时,方程组
无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
选项
答案
原方程组系数矩阵的行列式为 [*] 故当λ≠1且λ≠-4/5时,方程组有唯一解. 当λ=1时,原方程组为 [*] 对其增广矩阵施以初等行变换,有 [*] 因此,当λ=1时,原方程组有无穷多解,其通解为 x=(1,-1,0)
T
+k(0,1,1)
T
, 其中k为任意常数. 当λ=-4/5时,原方程组的同解方程组为 [*] 对其增广矩阵施以初等行变换,有 [*] 由此可知当λ=-4/5时,原方程组无解. 本题也可对原方程组的增广矩阵施以初等行变换得 [*] 讨论:①当λ=-4/5时,r(A)=2≠r(B)=3.故原方程组无解; ②当λ≠1,且λ≠-4/5时,r(A)=r(B)=3,原方程组有唯一解; ③当λ=1时,有 [*] 显然,r(A)=r(B)=2<3,原方程组有无穷多解,其通解为x=k(0,1,1)
T
+(1,-1,0)
T
,其中k为任意常数.
解析
本题主要考查非齐次线性方程组有解的判定及解的求法.将方程组写成矩阵的形式Ax=b.当|A|≠0时,Ax=b有唯一解;当|A|=0时,方程组Ax=b有无穷多解还是无解要看增广矩阵的秩是否等于系数矩阵的秩.
转载请注明原文地址:https://kaotiyun.com/show/HY84777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上有二阶连续导数,求证:∫abf(x)dx=(b-a)[f(a)+f(b)]+∫abf"(x)(x-a)(x-b)dx.
求下列函数的导数:
设实对称矩阵A=,求可逆矩阵P,使P一1AP为对角矩阵,并计算行列式|A一E|的值.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫ab(x)dx=1.证明:∫abf(x)φ(c)dx≥f[∫abxφ(x)dx].
a,b取何值时,方程组有解?
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设z=f[xg(y),x-y],其中f二阶连续可偏导,g二阶可导,求
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
(04)设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设f(χ)=3χ2+χ2|χ|,则使f(n)(0)存在的最高阶数n=
随机试题
脑瘫患儿不是言语治疗的项目为
2013年3月,王某在一次抢劫过程中,因行人报案,被市公安局侦查人员当场抓获。从侦查阶段到审判阶段,王某对被指控的抢劫罪没有异议。2013年6月15日。甲市基层人民法院正式受理了此案,并认为王某可能被判处3年以下有期徒刑,遂直接决定适用简易程序进行审理。2
【背景资料】某专业工程公司通过投标获得了某火灾报警及联动控制系统工程项目的施工任务,该公司在施工前根据施工总平面图设计编制了施工方案和施工进度计划,接着对施工总平面图设计做了分析评价,发现施工总平面图设计有不妥之处,责令有关人员对施工总平面图设计进行了优
必须采用硅酮结构密封胶粘接的建筑幕墙受力接缝有()。
某车间的质量改进团队对A系列产品的不合格品项目进行改进时做以下工作:为了找出A系列产品中的主要不合格品项目,小组可以使用的工具有()。
周师傅50岁左右下岗了,下岗之后在家附近小区修鞋,修了几万双鞋,周围居民都认为他人不错。后来周师傅忽然去世了。留下一个80岁的老母亲和残疾的女儿。小区人觉得他们可怜,组织进行募捐,谈谈你的看法?
在计算机网络通信领域中,防火墙是一项协调确保信息安全的设备,它会依照特定的规则,允许或是限制传输的数据通过。小张在自己的计算机上安装了防火墙软件,下列论述正确的是()。
论述二战前夕德国法西斯的扩张步伐
不属于遗产债务清偿原则的是()。
[*]
最新回复
(
0
)