首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=a处可导,且f(a)≠0,则|f(x)|在x=a处( ).
设f(x)在x=a处可导,且f(a)≠0,则|f(x)|在x=a处( ).
admin
2018-05-22
60
问题
设f(x)在x=a处可导,且f(a)≠0,则|f(x)|在x=a处( ).
选项
A、可导
B、不可导
C、不一定可导
D、不连续
答案
A
解析
不妨设f(a)>0,因为f(x)在x=a处可导,所以f(x)在x=a处连续,于是存在δ>0,当|x-a|<δ时,有f(x)>0,于是
=f’(a),即|f(x){在x=a处可导,同理当f(a)<0时,|f(x)|在x=a处也可导,选(A).
转载请注明原文地址:https://kaotiyun.com/show/Hlk4777K
0
考研数学二
相关试题推荐
曲线的斜渐近线方程为______.
设函数f(x)=x2(x-1)(x-2),则f’(x)的零点个数为
设向量组α1=(1,1,1,3)T,α2=(-1,一3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T,(1)户为何值时,该向量组线陛无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
设α为3维列向量,αT是α的转置。若,则αTα=_______.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*等于
设f(x)在[0,1]上连续,在(0,1)内可导,且满足,证明:存在一点ξ∈(0,1),使得f’(ξ)=2ξf(ξ).
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=(α3,α2,α1,β一α4).求方程组Bx=αl—α2的通解.
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
随机试题
校编
项目决策分析与评价的关键是()。
机械强度高,抗冲击性高,弹性比普通玻璃大得多,热稳定性好,在受急冷急热作用时,不易发生炸裂,碎后不易伤人的建筑玻璃是()玻璃。
甲公司授权业务员张某去乙公司采购大蒜,张某持甲公司已经盖章的空白合同书以及采购大蒜的授权委托书前往。2014年3月1日,张某以甲公司的名义和乙公司签订大蒜买卖合同,约定由乙公司代办托运,货交承运人丙公司后即视为完成交付。大蒜总价款为100万元,货
学生操行评语的基本写法包括()
某医院护士小娟从抗疫前线胜利归来,单位同事小红、小丽和小明三人结伴来看望她。他们送给小娟一束鲜花及一些慰问品。小娟问这些礼物是谁买的?三人笑着回答:小红:我没有买,小丽也没有买;小丽:我没有买,小明也没有买;小明:我没有买,是她们两人共同买的。后来
撰拟规范性公文应遵循()要求。
Ahigh-contextcultureisacultureinwhichthecontextofthemessageortheactionoraneventcarriesalargepartofits【T1
Teachersneedtobeawareoftheemotional,intellectual,andphysicalchangesthatyoungadultsexperience.Andtheyalsoneed
EveryyearmorethanhalfamillionAmericankidshavedrainage(排泄)tubessurgicallyimplantedintheirearstocombatpersistent
最新回复
(
0
)