首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×m中元素aij的代数余子式(i,j=1,2,…,n),二次型 二次型g(x)=xTAx与f(x)的规范形是否相同?说明理由.
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×m中元素aij的代数余子式(i,j=1,2,…,n),二次型 二次型g(x)=xTAx与f(x)的规范形是否相同?说明理由.
admin
2016-01-11
59
问题
设A为n阶实对称矩阵,r(A)=n,A
ij
是A=(a
ij
)
n×m
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型
二次型g(x)=x
T
Ax与f(x)的规范形是否相同?说明理由.
选项
答案
因为(A
一1
)
T
AA
一1
=(A
T
)
一1
E=A
一1
,所以A与A
一1
合同,于是g(x)=x
T
Ax与f(x)有相同的规范形.
解析
本题主要考查二次型的基本理论.首先求出二次型f(x)的矩阵,并证明该矩阵为A
一1
,且为对称矩阵.然后证明矩阵A与A
一1
合同.
转载请注明原文地址:https://kaotiyun.com/show/Hv34777K
0
考研数学二
相关试题推荐
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足________.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,﹣1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
设f(x)为微分方程yˊ-xy=g(x)满足y(0)=1的解,其中g(x)=,则有()
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).若α=(1,2,-1)T,求Aα;
随机试题
病人75岁,女性,跌倒后感右髋部疼痛,不能站立行走。首先考虑的诊断是()
患者,男,52岁,既往有乙肝病史15年,近三个月出现食欲减退、进食后腹胀,加重一个月。查体:皮肤散在淤点、紫癜,肝肋下3cm、质硬,叩诊腹部呈移动性浊音。实验室检查:ALT显著升高,AFP正常。该患者最可能的诊断是
患者,男,46岁,由于腹部撞击锐利器械被家人送入医院就诊,来院后行剖腹探查,见脾及回、结肠数处刀刺伤口,边缘整齐,给患者进行了各项修补术,术后放置引流管。术后48小时,护士发现患者腹腔引流管流出少量粪渣,此时应考虑患者出现了
大剂量时明显收缩肾血管,而小剂量时增加肾血流的药物是()。
2002年,甲乙两村发生用地争议,某县政府召开协调会并形成会议纪要。2008年12月,甲村一村民向某县政府申请查阅该会议纪要。下列哪些选项是正确的?(2009年试卷二第81题)
具有一定格式、用于记录经济业务事项的发生和完成情况,明确经济责任,并作为记账依据的书面证明的是()。
“一桌子苹果,别人通常挑一两个,挑三四个。毕加索最可气,每个都咬上一口,每个苹果上都有他的牙印儿。”一位中国画家如此评价毕加索。毕加索一生搞过素描、油画、雕塑、版画,担任过舞台设计,还写过小说、剧本和无标点散文诗。从这段文字中我们可以推论(
风扇:空调
对于良好的行为采取居功态度,而对于不好的行为,则否认自己的责任,这是归因中的()【西南大学2014】
To;Roberts.hifi.co.ukFrom;Dave@electricalsupplies.comWearesorrythatourcomputerorderingsystembroke【16】______la
最新回复
(
0
)