首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×m中元素aij的代数余子式(i,j=1,2,…,n),二次型 二次型g(x)=xTAx与f(x)的规范形是否相同?说明理由.
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×m中元素aij的代数余子式(i,j=1,2,…,n),二次型 二次型g(x)=xTAx与f(x)的规范形是否相同?说明理由.
admin
2016-01-11
41
问题
设A为n阶实对称矩阵,r(A)=n,A
ij
是A=(a
ij
)
n×m
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型
二次型g(x)=x
T
Ax与f(x)的规范形是否相同?说明理由.
选项
答案
因为(A
一1
)
T
AA
一1
=(A
T
)
一1
E=A
一1
,所以A与A
一1
合同,于是g(x)=x
T
Ax与f(x)有相同的规范形.
解析
本题主要考查二次型的基本理论.首先求出二次型f(x)的矩阵,并证明该矩阵为A
一1
,且为对称矩阵.然后证明矩阵A与A
一1
合同.
转载请注明原文地址:https://kaotiyun.com/show/Hv34777K
0
考研数学二
相关试题推荐
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
设A=求a,b及正交矩阵P,使得PTAP=B.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ1-2ξ2-ξ3,(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足________.
设f(x)是连续函数,F(x)是f(x)的原函数,则().
已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.(Ⅰ)问p和q何值时,S达到最大值?(Ⅱ)求出此最大值.
设f(x)为微分方程yˊ-xy=g(x)满足y(0)=1的解,其中g(x)=,则有()
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx经正交变换x=Qy后的标准形为y12+y22-y32,则二次型g(x1,x2,x3)=xTAA*x经可逆线性变换x=Py后的规范形为()
设当x→0时,是等价的无穷小,则常数a=__________.
随机试题
车削薄壁工件时,一般尽量不用径向夹紧方法,最好应用轴向夹紧方法。()
Enoughsleepisimportanttohealth.Theamountofsleep【C1】______dependsontheageofthepersonandtheconditionsinwhichs
某女,33岁,刷牙经常出血,临床诊断为牙龈炎,应建议她多长时间做一次洁治()
依据《生产安全事故报告和调查处理条例》的规定,事故调查组提交事故调查报告的期限可以适当延长,但延长的期限最长不超过()日。
投资基金国际化不包括()。
下列选项中,属于责任性的旅游故障是()。
根据知识的功能划分,可以把知识划分为____________和程序性知识。
【陆九渊】
下列选项中,不属于电子商务对安全的基本要求的特性是
Organicfarmershadfoughttopreventgenetically-engineeredcropsfrombeing【C1】______organic,anditcould【C2】______forthem.
最新回复
(
0
)