首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知数列{x}满足:x0=25,xn=arctanxn—1(n=1,2,3,…),证明{xn}的极限存在,并求其极限.
已知数列{x}满足:x0=25,xn=arctanxn—1(n=1,2,3,…),证明{xn}的极限存在,并求其极限.
admin
2018-06-14
92
问题
已知数列{x}满足:x
0
=25,x
n
=arctanx
n—1
(n=1,2,3,…),证明{x
n
}的极限存在,并求其极限.
选项
答案
设f(x)=arctanx—x,则f(0)=0, [*] 所以f(x)单调减少,当x>0时f(x)<f(0)=0,即arctanx<x,于是有 x
n
=arctanx
n—1
<x
n—1
. 由此可知,数列{x
n
}单调递减. 又x
0
=25,x
1
=arctan25>0,…,且对每个n,都有x
n
>0,根据极限存在准则即知[*]x
n
存在. 设[*]x
n
=a,在x
n
=arctanx
n
两边取极限得a=arctana,所以a=0,即[*]x
n
=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/I2W4777K
0
考研数学三
相关试题推荐
证明方程在(0,+∞)内有且仅有两个根.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
设b>a>0,证明:
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
证明曲线上任一点的切线的横截距与纵截距之和为2.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x一y|k.证明:当k>1时,f(x)=常数.
设k>0.讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
设f(x)=求常数A与k使得当x→0时f(x)与Axk是等价无穷小量.
随机试题
在下列沟通形态中,容易使行政人员士气非常低落的是()
微分方程sinxcosydy+cosxsinydx=0的通解为()
导致小叶性肺炎的有
乳牙的解剖特点不包括
在有效证券市场分类中与证券价格有关的“可知”资料分类中,其关系是:第I类资料包含于第Ⅱ类资料,第Ⅱ类资料包含于第Ⅲ类资料中。()
物业管理师职业准入制度按职责分工共同负责实施、指导、监督和检查的部门有()。
中学地理教材教法的学科知识系统主要分__________和__________。
下列关于男女双性化的说法不正确的是()
根据皮亚杰的研究,初中生的思维处于具体运算阶段向形式运算阶段过渡的时期。针对这一发展特点,教师在教学中应加强对学生()。
HowTwoGreatConflictsHelpedtoChangeEuropeNinetyyearsagoonasunnymorninginNorthernFrance,somethinghappenedt
最新回复
(
0
)