首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y"一3y’+ay=一5e-x的特解形式为Axe-x,则其通解为__________.
设y"一3y’+ay=一5e-x的特解形式为Axe-x,则其通解为__________.
admin
2019-01-12
43
问题
设y"一3y’+ay=一5e
-x
的特解形式为Axe
-x
,则其通解为__________.
选项
答案
Y=C
1
e
-x
+C
2
e
4x
+xe
-x
.
解析
因为方程有特解Axe
-x
,所以一1为特征值,即(一1)
2
一3×(一1)+a=0→a=一4,所以特征方程为λ
2
一3λ一4=0→λ
1
=一1,λ
2
=4,齐次方程y"一3y’+ay=0的通解为y=C
1
e
-x
+C
2
e
4x
,再把Axe
-x
代入原方程得A=1,原方程的通解为Y=C
1
e
-x
+C
2
e
4x
+xe
-x
.
转载请注明原文地址:https://kaotiyun.com/show/I3M4777K
0
考研数学一
相关试题推荐
设函数y=y(x)由方程组
求极限
设总体X的密度函数为其中θ>0为未知参数,x1,X2,…,Xn为来自X的样本,证明:都是θ的无偏估计量;
设总体X服从指数分布,其密度函数为其中λ>0是未知参数,X1,X2,…,Xn为取自总体X的样本.判断的最大似然估计的无偏性;
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(Ⅰ)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(Ⅰ)与(Ⅱ)的公共解.
设A是n阶反对称矩阵.证明:对任何非零常数c,矩阵A+cE恒可逆.
当x→0时下列无穷小是x的n阶无穷小,求阶数n:(I)(Ⅱ)(1+tan2x)sinx一1;(Ⅲ)(Ⅳ)∫0xsint.sin(1一cost)2dt.
计算行列式
设f(u)(u>0)有连续的二阶导数且满足方程=16(x2+y2)z,求f(u).
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以u=f(x)为曲边的曲边梯形的面积;
随机试题
下列不是急性白血病的临床特征的是
参与联合脱氨基作用的酶是
2008年,全国多处出现婴儿“肾结石”病例报道。经各方调查发现,患儿有长期食用相同品牌奶粉的经历。该奶粉中导致“肾结石”的毒性化学物是
设随机变量X的概率密度为f(x)=,则P(0≤X≤3)等于()。
代理是指代理人在()实施民事法律行为。
按照现行规定,下列关于整数委托和零数委托的说法中,正确的有()。
有一项年金,前3年无流入,后5年每年年初流入500万元,假设年利率为10%,其现值为()万元。
职业道德[南京大学2008年研]
在窗体中有文本框Text1和Text2。运行程序时,在Text1中输入整数m(m>0),单击Command1“运行”按钮,程序能够求出m的全部除1之外的因子,并使用Text2显示结果。例如,18的全部因子有2,3,6,9,18,输出结果为2,3,6,9,1
Veryoldpeopledoraisemoralproblemsforalmosteveryonewhocomesintocontactwiththem.Theirvalues,thiscan’tbe【B1】___
最新回复
(
0
)