首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
admin
2019-08-12
86
问题
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
选项
A、若f(x)在(一∞,+∞)上可导且单调增加,则对一切x∈(一∞,+∞),都有f
’
(x)>0。
B、若f(x)在点x
0
处取得极值,则f
’
(x
0
)=0。
C、若f
’’
(x
0
)=0,则(x
0
,f(x
0
))是曲线y=f(x)的拐点。
D、若f
’
(x
0
)=0,f
’’
(x
0
)=0,f
’’’
(x
0
)≠0,则x
0
一定不是f(x)的极值点。
答案
D
解析
若在(一∞,+∞)上f
’
(x)>0,则一定有f(x)在(一∞,+∞)上单调增加,但可导函数f(x)在(一∞,+∞)上单调增加,可能有f
’
(x)≥0。例如f(x)=x
3
在(一∞,+∞)上单调增加,f
’
(0)=0故不选A。
f(x)若在x
0
处取得极值,且f
’
(x
0
)存在,则有f
’
(x
0
)=0,但当f(x)在x
0
处取得极值,在x
0
处不可导,就得不到f
’
(x
0
)=0,例如f(x)=|x|在x
0
=0处取得极小值,它在x
0
=0处不可导,故不选B。
如果f(x)在x
0
处二阶导数存在,且(x
0
,f(x
0
))是曲线的拐点,f
’
(x
0
)=0,反之不一定,例如f(x)=x
4
在x
0
=0处f
’’
(0)=0,但f(x)在(一∞,+∞)没有拐点,故不选C。由此选D。
转载请注明原文地址:https://kaotiyun.com/show/I5N4777K
0
考研数学二
相关试题推荐
(10年)当0≤θ≤π时,对数螺线r=eθ的弧长为_______.
(12年)设Ik=∫0kπsinxdx(k=1.2,3),则有
(96年)求微分方程y"+y’=x2的通解.
(10年)设函数u=f(x,y)具有二阶连续偏导数,且满足等式确定a,b的值,使等式在变换ξ=x+ay.η=x+by下简化为
(15年)设D是第一象限中由曲线2xy=1,4xy=1与直线y=x,围成的平面区域,函数f(x,y)在D上连续.则f(x,y)dxdy=
(2005年)设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=_______.
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βa线性表示,则
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=(1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
细菌的增长率与总数成正比.如果培养的细菌总数在24h内由100增长到400,求前12h后的细菌总数.
设n阶行列式Dn=,求Dn完全展开后的n!项中正项的总数。
随机试题
自中药中提取原生苷可采用的方法有
设α(x)=1-cosx,β(x)=2x2,则当x→0时,下列结论中正确的是:
进度计划的调整方法有( )。
线性盈亏平衡分析的假设条件不包括()。
小潘今年28岁,和女友相恋4年,两人计划今年买房,国庆期间结婚,待新房装修完毕后,年底即可搬入。他们经过多方对比,目前认为有两套房子比较合意。其中一套(甲)位于二环路附近,面积87平方米,价格9000元/平方米,可以办理两成首付,利用公积金贷款;另外一套(
甲公司为增值税一般纳税人,主要生产和销售洗衣机。2018年6月有关经济业务如下:(1)购进一批原材料,取得增值税专用发票上注明的税额为272000元;支付运输费,取得增值税专用发票上注明税额2750元。(2)购进低值易耗品,取得增值税普
正态分布N(μ,σ2)中σ的含义及性质为________。
美国在高等教育宏观管理体制上采用()。
社会本位论典型的错误是抽象地谈论个人能力。()
SlaveryhasplayedasignificantroleinthehistoryoftheU.S.ItexistedinalltheEnglishmainlandcoloniesandmostofth
最新回复
(
0
)