首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
admin
2019-08-12
65
问题
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
选项
A、若f(x)在(一∞,+∞)上可导且单调增加,则对一切x∈(一∞,+∞),都有f
’
(x)>0。
B、若f(x)在点x
0
处取得极值,则f
’
(x
0
)=0。
C、若f
’’
(x
0
)=0,则(x
0
,f(x
0
))是曲线y=f(x)的拐点。
D、若f
’
(x
0
)=0,f
’’
(x
0
)=0,f
’’’
(x
0
)≠0,则x
0
一定不是f(x)的极值点。
答案
D
解析
若在(一∞,+∞)上f
’
(x)>0,则一定有f(x)在(一∞,+∞)上单调增加,但可导函数f(x)在(一∞,+∞)上单调增加,可能有f
’
(x)≥0。例如f(x)=x
3
在(一∞,+∞)上单调增加,f
’
(0)=0故不选A。
f(x)若在x
0
处取得极值,且f
’
(x
0
)存在,则有f
’
(x
0
)=0,但当f(x)在x
0
处取得极值,在x
0
处不可导,就得不到f
’
(x
0
)=0,例如f(x)=|x|在x
0
=0处取得极小值,它在x
0
=0处不可导,故不选B。
如果f(x)在x
0
处二阶导数存在,且(x
0
,f(x
0
))是曲线的拐点,f
’
(x
0
)=0,反之不一定,例如f(x)=x
4
在x
0
=0处f
’’
(0)=0,但f(x)在(一∞,+∞)没有拐点,故不选C。由此选D。
转载请注明原文地址:https://kaotiyun.com/show/I5N4777K
0
考研数学二
相关试题推荐
设f(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设当x→0时,F(x)=∫0xnf(t)dt与xk为同阶无穷小,其中m与n为正整数.则k=()
(05年)
(05年)设函数f(x)=则f(x)在(一∞,+∞)内
(14年)设函数f(u)具有2阶连续导数,z=f(excosy)满足若f(0)=0,f’(0)=0,求f(u)的表达式.
(04年)设z=f(x2一y2,exy),其中f具有连续二阶偏导数,求
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问t为何值时,向量组α1,α2,α3线性无关?(2)当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α1表示为α1和α2的线性组合.
设向量组α1,α2,α3线性相关,而α2,α3,α4线性无关,问:(1)α1能否用α2,α3线性表示?并证明之;(2)α4能否用α1,α2,α3线性表示?并证明之.
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
证明可微的必要条件:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且=fx’(x0,y0)△x+fy’(x0,y0)△y。
设f(x,y)=f(x,y)在点(0,0)处是否连续?
随机试题
铁观音是乌龙茶的极品,其品质特征是:茶条弯曲,肥壮圆结,沉重匀整,色泽浅绿,整体形状似蜻蜓身、螺旋体、青蛙头。
试述舆论的主要作用。
下列叙述错误的是
“望色十法”中,面色由夭转泽,表明
下列出口货物中,()是可以不需凭出口收汇核销单办理核销手续的。
射频识别系统的优点包括()。
下列选项中,与情绪关系最密切的结构是()
毛泽东强调:必须严格区分和正确处理敌我之间和人民内部这两类矛盾。这包括()。
有以下定义和语句:struetworkers{intnum;charname[20];charc;struet{intday;intmonth;intyear;}s;};struetworkersw,*pw;p
Whenyoustoptothinkaboutit,criticismisavitalpartofworkinglife.Withoutfeedback,howwouldyoueverdiscoverwhat
最新回复
(
0
)