首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
admin
2019-08-12
57
问题
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
选项
A、若f(x)在(一∞,+∞)上可导且单调增加,则对一切x∈(一∞,+∞),都有f
’
(x)>0。
B、若f(x)在点x
0
处取得极值,则f
’
(x
0
)=0。
C、若f
’’
(x
0
)=0,则(x
0
,f(x
0
))是曲线y=f(x)的拐点。
D、若f
’
(x
0
)=0,f
’’
(x
0
)=0,f
’’’
(x
0
)≠0,则x
0
一定不是f(x)的极值点。
答案
D
解析
若在(一∞,+∞)上f
’
(x)>0,则一定有f(x)在(一∞,+∞)上单调增加,但可导函数f(x)在(一∞,+∞)上单调增加,可能有f
’
(x)≥0。例如f(x)=x
3
在(一∞,+∞)上单调增加,f
’
(0)=0故不选A。
f(x)若在x
0
处取得极值,且f
’
(x
0
)存在,则有f
’
(x
0
)=0,但当f(x)在x
0
处取得极值,在x
0
处不可导,就得不到f
’
(x
0
)=0,例如f(x)=|x|在x
0
=0处取得极小值,它在x
0
=0处不可导,故不选B。
如果f(x)在x
0
处二阶导数存在,且(x
0
,f(x
0
))是曲线的拐点,f
’
(x
0
)=0,反之不一定,例如f(x)=x
4
在x
0
=0处f
’’
(0)=0,但f(x)在(一∞,+∞)没有拐点,故不选C。由此选D。
转载请注明原文地址:https://kaotiyun.com/show/I5N4777K
0
考研数学二
相关试题推荐
设A是三阶矩阵,有特征值λ1≠λ2≠λ3,则B=(λ1E-A)(λ2E-A)(λE-A)=______.
设f(x)在(-∞,+∞)上连续,下述命题:①若对任意a,∫-aaf(x)dx=0,则f(x)必是奇函数;②若对任意a,∫-aaf(x)dx=2∫0af(x)dx,则f(x)必是偶函数;③若f(x)为周期为T的奇函数,则F(x)=∫0xf(t)dt也
(10年)一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平激.当油罐中油面高度为时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
(12年)设Ik=∫0kπsinxdx(k=1.2,3),则有
(07年)设二元函数计算二重积分其中D={(x,y)||x|+|y|≤2}.
(15年)计算二重积分x(x+y)dxdy,其中D={(x,y)|x2+y2≤2,y≥x2}.
(2001年)已知矩阵且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是3阶单位阵,求X.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解,求出矩阵A及(A-E)6.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1一α2,α1一2α2+α3,(α1一α3),α1+3α2—4α3,是导出组Ax=0的解向量的个数为()
设微分方程xf”(x)-f’(x)=2x.(I)求上述微分方程的通解;(Ⅱ)求得的解在x=0处是否连续?若不是,能否对每一个解补充定义,使其在x=0处连续,并讨论补充定义后的f(x)在x=0处的f’(0)及f”(0)的存在性,要求写出推理过程.
随机试题
A.活血祛瘀,固冲安胎B.益气养血,固冲安胎C.补填填精,固冲安胎D.温补肾阳,固冲安胎E.补肾健脾,调理冲任
蠕形螨寄生于
A.推动作用B.营养作用C.气化作用D.防御作用E.固摄作用元气的主要功能是()
下列各项中,属于会计政策变更的是()。(2015年学员回忆版)
(2013年)甲公司为实现多元化经营,决定对乙公司进行长期股权投资。甲公司和乙公司适用的企业所得税税率均为25%,按净利润的10%提取盈余公积。投资业务的相关资料如下: (1)2009年11月10日,甲公司与丙公司签订了收购其持有的乙公司2000万股普
甲汽车租赁公司拟购置一批新车用于出租,现有两种投资方案,相关信息如下:方案一:购买中档轿车100辆,每辆车价格10万元,另需支付车辆价格10%的购置相关税费,每年平均出租300天,日均租金150元/辆,车辆预计使用年限8年,8年后变现价值为0,前
由正脊、四条垂脊、四条戗脊组成的屋顶形式称为()
在社会策划模式实施过程中,自我评估指的是由社会工作者()。
证明:.
在用Open语句打开文件时,如果省略“For方式”,则打开的文件的存在方式是______。
最新回复
(
0
)