首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
admin
2019-08-12
79
问题
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
选项
A、若f(x)在(一∞,+∞)上可导且单调增加,则对一切x∈(一∞,+∞),都有f
’
(x)>0。
B、若f(x)在点x
0
处取得极值,则f
’
(x
0
)=0。
C、若f
’’
(x
0
)=0,则(x
0
,f(x
0
))是曲线y=f(x)的拐点。
D、若f
’
(x
0
)=0,f
’’
(x
0
)=0,f
’’’
(x
0
)≠0,则x
0
一定不是f(x)的极值点。
答案
D
解析
若在(一∞,+∞)上f
’
(x)>0,则一定有f(x)在(一∞,+∞)上单调增加,但可导函数f(x)在(一∞,+∞)上单调增加,可能有f
’
(x)≥0。例如f(x)=x
3
在(一∞,+∞)上单调增加,f
’
(0)=0故不选A。
f(x)若在x
0
处取得极值,且f
’
(x
0
)存在,则有f
’
(x
0
)=0,但当f(x)在x
0
处取得极值,在x
0
处不可导,就得不到f
’
(x
0
)=0,例如f(x)=|x|在x
0
=0处取得极小值,它在x
0
=0处不可导,故不选B。
如果f(x)在x
0
处二阶导数存在,且(x
0
,f(x
0
))是曲线的拐点,f
’
(x
0
)=0,反之不一定,例如f(x)=x
4
在x
0
=0处f
’’
(0)=0,但f(x)在(一∞,+∞)没有拐点,故不选C。由此选D。
转载请注明原文地址:https://kaotiyun.com/show/I5N4777K
0
考研数学二
相关试题推荐
(07年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g”(ξ).
(09年)计算二重积分(x—y)dxdy,其中D={(x,y)|(x—1)2+(y—1)2≤2,y≥x}.
(14年)设函数u(x,y)在有界闭区域D上连续,在D的内部具有2阶连续偏导数,且满足
(14年)曲线L的极坐标方程是r=θ,则L在点(r,θ)=处的切线的直角坐标方程是________
设x1=10.(n=1,2,…),试证数列{xn}极限存在,并求此极限.
(2004年)设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A的伴随矩阵,E是单位矩阵,则|B|=_______.
设B是元素全为1的行阶方阵(n≥2),证明:(E-B)-1=E-
(15)设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解,求出矩阵A及(A-E)6.
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A-E恒可逆.正确的个数为()
随机试题
小腿部腹股沟反射区的操作力度不宜过重。()
应用PLC检查分析数控机床故障原因需要具备哪些技术基础?
椎间盘位于相邻_______之间,由中央的_______和周围的_______组成。
A、2409.64B、2142.86C、2114.81D、1894.74C
下列不能够报名参加报关员资格考试的人员是:()。
甲公司2018年3月12日向A银行借入专门借款15000万元用于生产线建设。4月1日向建设方支付工程备料款3000万元,5月2日工程送审,6月3日工程备案获得通过,7月1日工程正式动工,当日支付建设方工程款800万元。则甲公司专门借款开始资本化的时间为
下列关于损失事件管理的表述中,错误的有()。
Thisnoticeconcernsallemployeeswhousetheconferencerooms.Startingimmediately,youwillneedtoofficiallyreserveanyc
牛顿、达尔文和爱因斯坦是世界著名的科学家。下列关于他们的成就在人类文明进程中所起到的共同作用的表述,正确的是()
有些大学生喜欢旅游,所有的登山爱好者都喜欢旅游。因此有些大学生也是登山爱好者。以下哪个推理具有与上述推理最为类似的结构?
最新回复
(
0
)