首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关; (2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关; (2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分
admin
2018-09-25
87
问题
(1)设λ
1
,λ
2
,…,λ
n
是n阶矩阵A的互异特征值,α
1
,α
2
,…,α
n
是A的分别对应于这些特征值的特征向量,证明α
1
,α
2
,…,α
n
线性无关;
(2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ
1
,λ
2
,…,λ
n
互异,α
i
分别是方程组(A—λB)x=0的非零解,i=1,2,…,,2.证明α
1
,α
2
,…,α
n
线性无关.
选项
答案
(1)用数学归纳法. ①由特征向量α
1
≠0,故α
1
线性无关; ②假设前K-1个向量α
1
,α
2
,…,α
k-1
线性无关,以下证明α
1
,α
2
,…,α
k
线性无关.K个互异特征值λ
1
,λ
2
,…,λ
k
对应着特征向量α
1
,α
2
,…,α
k
.现设存在一组数l
1
,l
2
,…,l
k
,使得 l
1
α
1
,l
2
α
2
,…,l
k
α
k
=0, (*) 在(*)式两端左边乘A,有l
1
Aα
1
,l
2
Aα
2
,…,l
k
Aα
k
=0, 即 l
1
λ
1
α
1
,l
2
λ
2
α
2
,…,l
k
λ
k
α
k
=0; (**) 又在(*)式两端左边乘λ
k
,有l
1
λ
k
α
1
,l
2
λ
k
α
2
,…,l
k
λ
k
α
k
=0. (***) 用(**)式减去(***)式,得 l
1
(λ
1
-λ
k
)α
1
+l
2
(λ
2
-λ
k
)α
2
+…+l
k-1
(λ
k-1
-λ
k
)α
k-1
=0. 由归纳假设α
1
,α
2
,…,α
k-1
线性无关,故 l
1
(λ
1
-λ
k
)=l
2
(λ
2
-λ
k
)=…=l
k-1
(λ
k-1
-λ
k
)=0, 又λ
i
-λ
k
≠0(i=1,2,…,k-1),故l
1
=l
2
=…=l
k-1
=0. 代回(*)式,于是l
k
α
k
=0,由α
k
≠0,有l
k
=0,于是α
1
,α
2
,…,α
k
线性无关. 所以n的互异特征值对应特征向量α
1
,α
2
,…,α
n
线性无关. (2)由|B|≠0,在|A-λB|=0两端左边乘|B
-1
|,有 |B
-1
A-λE|=0,即|λE-B
-1
A|=0, 于是λ
1
,λ
2
,…,λ
n
是矩阵B
-1
A的n个互异特征值. 又由(A-λ
i
B)x=0,两端左边乘B
-1
,有 (B
-1
A-λ
i
E)x=0,即(λ
i
E-B
-1
A)x=0, 故α
1
,α
2
,…,α
n
为B
-1
A的对应于λ
1
,λ
2
,…,λ
n
的特征向量,由(1)知,α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ieg4777K
0
考研数学一
相关试题推荐
设A是n阶正交矩阵,证明A*也是正交矩阵.
已知2CA一2AB=C—B,其中A=,则C3=____________.
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
已知线性方程组的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T,i=1,2,…,5.试问:(Ⅰ)α1能否由α2,α3,α4线性表出?(Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
已知α1=(1,一1,1)T,α2=(1,t,一1)T,α3=(t,1,2)T,β=(4,t2,一4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
设α1=(1,1)T,α2=(1,0)T和β1=(2,3)T,β2=(3,1)T,求由α1,α2到β1,β2的过渡矩阵.
设n阶矩阵A=,证明行列式|A|=(n+1)an.
设有参数方程0≤t≤π.(Ⅰ)求证该参数方程确定y=y(x),并求定义域;(Ⅱ)讨论y=y(x)的可导性与单调性;(Ⅲ)讨论y=y(x)的凹凸性.
已知方程组总有解,则λ应满足__________.
随机试题
战国时期,新兴地主阶级的法制指导思想是()。
集体行为的特征包括()
女性,35岁,患急性肾衰竭,已进入多尿期,每日尿量为4500ml。血压90/60mm}{g。化验血Na+125mmol/L,CQCP16mmol/L,血K+3.5mmol/L,Scr467μmol/L,Hct55%有关本例低钠血症的治疗正确的是
脾破裂的病人需要进行的手术是
无增殖能力的血细胞是
中毒型菌痢的基本病理生理改变是( )。
患者,女,27岁,已婚。孕7个月,面目四肢浮肿,皮薄光亮,按之凹陷,气短懒言,纳少便溏,舌质胖嫩,边有齿痕,舌苔白腻,脉缓滑。治疗应首选()
“嘉石之制”
根据国标规定,建筑工程图纸尺寸标注,总图以米为单位,其余均以()为单位,为了图纸简明,按此规定画图,尺寸的数字后面可不写单位。
Internetshoppingisanewwayofshopping.Nowadays,youcanshopforjustaboutanythingfromyourarmchair.Allyouneedisa
最新回复
(
0
)