首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关; (2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关; (2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分
admin
2018-09-25
50
问题
(1)设λ
1
,λ
2
,…,λ
n
是n阶矩阵A的互异特征值,α
1
,α
2
,…,α
n
是A的分别对应于这些特征值的特征向量,证明α
1
,α
2
,…,α
n
线性无关;
(2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ
1
,λ
2
,…,λ
n
互异,α
i
分别是方程组(A—λB)x=0的非零解,i=1,2,…,,2.证明α
1
,α
2
,…,α
n
线性无关.
选项
答案
(1)用数学归纳法. ①由特征向量α
1
≠0,故α
1
线性无关; ②假设前K-1个向量α
1
,α
2
,…,α
k-1
线性无关,以下证明α
1
,α
2
,…,α
k
线性无关.K个互异特征值λ
1
,λ
2
,…,λ
k
对应着特征向量α
1
,α
2
,…,α
k
.现设存在一组数l
1
,l
2
,…,l
k
,使得 l
1
α
1
,l
2
α
2
,…,l
k
α
k
=0, (*) 在(*)式两端左边乘A,有l
1
Aα
1
,l
2
Aα
2
,…,l
k
Aα
k
=0, 即 l
1
λ
1
α
1
,l
2
λ
2
α
2
,…,l
k
λ
k
α
k
=0; (**) 又在(*)式两端左边乘λ
k
,有l
1
λ
k
α
1
,l
2
λ
k
α
2
,…,l
k
λ
k
α
k
=0. (***) 用(**)式减去(***)式,得 l
1
(λ
1
-λ
k
)α
1
+l
2
(λ
2
-λ
k
)α
2
+…+l
k-1
(λ
k-1
-λ
k
)α
k-1
=0. 由归纳假设α
1
,α
2
,…,α
k-1
线性无关,故 l
1
(λ
1
-λ
k
)=l
2
(λ
2
-λ
k
)=…=l
k-1
(λ
k-1
-λ
k
)=0, 又λ
i
-λ
k
≠0(i=1,2,…,k-1),故l
1
=l
2
=…=l
k-1
=0. 代回(*)式,于是l
k
α
k
=0,由α
k
≠0,有l
k
=0,于是α
1
,α
2
,…,α
k
线性无关. 所以n的互异特征值对应特征向量α
1
,α
2
,…,α
n
线性无关. (2)由|B|≠0,在|A-λB|=0两端左边乘|B
-1
|,有 |B
-1
A-λE|=0,即|λE-B
-1
A|=0, 于是λ
1
,λ
2
,…,λ
n
是矩阵B
-1
A的n个互异特征值. 又由(A-λ
i
B)x=0,两端左边乘B
-1
,有 (B
-1
A-λ
i
E)x=0,即(λ
i
E-B
-1
A)x=0, 故α
1
,α
2
,…,α
n
为B
-1
A的对应于λ
1
,λ
2
,…,λ
n
的特征向量,由(1)知,α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ieg4777K
0
考研数学一
相关试题推荐
在极坐标变换下将f(x,y)dσ化为累次积分,其中D为x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
计算xyzdxdy,其中∑是x≥0,y≥0,x2+y2+z2=1的外侧(见图9.9).
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A-B2是对称矩阵.
已知an>0(n=1,2,…),且(-1)n-1an条件收敛,记bn=2a2n-1-a2n,则级数bn
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
设有参数方程0≤t≤π.(Ⅰ)求证该参数方程确定y=y(x),并求定义域;(Ⅱ)讨论y=y(x)的可导性与单调性;(Ⅲ)讨论y=y(x)的凹凸性.
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f′(0)=0,且-1)f″(x)-xf′(x)=ex-1,则下列说法正确的是
求线性方程组的通解,并求满足条件的所有解.
随机试题
系统的温度越高,向外传递的热量越多。 ()
下列组合,错误的是
男性疝内容物可下降至阴囊的疝是( )
患儿,男,8岁,患急性肾小球肾炎1个月,现水肿消退、尿量增加,血压下降,血尿及蛋白尿均较前减轻,现证见头晕乏力,手足心热,寐中汗多,舌红苔少,脉细数。应辨证为()
不属于安全评价准备阶段的内容是()。
一、给定资料1.2010年1月12日,谷歌高级副总裁、首席法律顾问大卫•多姆德在谷歌官方博客上发表计划退出中国的声明,该声明称谷歌因不想再对搜索结果进行过滤,加之Gmai]服务器遭受到攻击,谷歌考虑关闭谷歌中国以及中国办事处。之后几天谷歌态度不断
华生认为学习的实质就是通过建立条件作用,形成刺激与反应之间的联结过程,从而形成习惯,遵循()。
根据加涅的学习层次分类观点,儿童学习游泳主要属于()。(2012年)
在窗体上画1个命令按钮和1个文本框,其名称分别为Command1和Text1,再编写如下程序:DimssAsStringPrivateSubText1_KeyPress(KeyAsciiAsInteger) IfChr(KeyA
Howcanlightandbrightcolorinfluencepeople?
最新回复
(
0
)