首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
admin
2017-04-24
31
问题
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是
选项
A、若u
1
>u
2
,则{u
n
}必收敛.
B、若u
1
>u
2
,则{u
n
}必发散.
C、若u
1
<u
2
,则{u
n
}必收敛.
D、若u
1
<u
2
,则{u
n
}必发散.
答案
D
解析
直接法:由拉格朗日中值定理知
u
2
一u
1
=f(2) 一 f(1)=f’(c) (1<c<2)
而 u
2
>u
1
,则f’(c)>0,
由于f"(x)>0,则f’(x)单调增,从而有f’(2)>f’(c)>0,由泰勒公式得,
f(x)=f(2)+f’(2)(x一2)+
(x 一 2)
2
x∈(0, +∞)
则 f(n)=f(2)+f(2)(n一2)+
(n—2)
2
>f(2)+f’(2)(n—2) (n>2)
由于f’(2)>0,则
(f(2)+f’(2)(n一2))=+∞,从而
=+∞,故{u
n
}发散.
转载请注明原文地址:https://kaotiyun.com/show/Ift4777K
0
考研数学二
相关试题推荐
证明:当x>0时,x2>(1+x)ln2(1+x).
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得[f(a)-f(ξ)]/[g(ξ)-g(b)]=f’(ξ)/g’(ξ).
设函数f(x)二阶可导,且f’(x)>0,f"(x)>0,△y=f(x+△x)-f(x),其中△x<0,则().
某公司每年的工资总额比上一年增加20%的基础上再追加2百万元,若以Wt表示第t年的工资总额(单位:百万元),则Wt满足的差分方程是________。
已知f2(x)=,且f(x)为可导正值函数,则f(x)=________。
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为V(t)=[t2f(t)-f(1)]试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=的解。
设X1,X2均服从参数为λ的指数分布,且相互独立,求X1+X2的密度函数.
设A,B为同阶可逆矩阵,则().
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
随机试题
简述教师对幼儿游戏介入的角色定位。
下列关于职业病论述错误的是
A.白芍、生地、当归、麦冬、沙参、枸杞子B.白芍、当归、丹皮、川芎、牛膝、莪术C.白芍、熟地、丹皮、黄柏、青蒿、茯苓D.白芍、生地、地骨皮、麦冬、玄参、阿胶E.白芍、生地、当归、丹皮、沙参、茯苓两地汤的组成药物有
肾综合征出血热早期休克的原因是
把12个球随机地投入三个箱子里,则“第一个箱子里有3个球”这一事件A发生的概率为________。
在下列各类市场中,属于生产要素市场的有()。
根据以下资料,回答下列问题。2014年1—4月份,民间固定资产投资69540亿元,同比名义增长20.4%,增速比1—3月份回落0.5个百分点。民间固定资产投资占全国固定资产投资(不含农户)的比重为64.9%,比1—3月份提高0.1个百分点。
地球在其形成的早期是一个熔岩状态的快速旋转体,绝大部分的铁元素处于其核心部分。有一些熔岩从这个旋转体的表面甩出,后来冷凝形成了月球。如果以上这种关于月球起源的理论正确,则最能支持以下哪项结论?
Itwasobviousthathehadbeendrinkingfartoomuchfromthewayhecame______downthestreet.
Afterreadingthepassage,youcan______.Studentsfallintothecategoryofthedreamersifthey______.
最新回复
(
0
)