首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得
admin
2018-11-21
28
问题
设f(x)在[x
1
,x
2
]可导,0<x
1
<x
2
,证明:
ξ∈(x
1
,x
2
)使得
选项
答案
令F(x)=[*],则f(x)在[x
1
,x
2
]可导,又F(x
1
)=[*][f(x
2
)—l], F(x
1
)一F(x
2
)=[*][f(x
1
)x
2
一f(x
2
)x
1
一l(x
2
一x
1
)]=0. 因此,由罗尔定理,[*]ξ∈(x
1
,x
2
),使得 F’(ξ)=[*][ξf’(ξ)一f(ξ)+l]=0, 即 f(ξ)一ξf’(ξ)=1.
解析
令l=
ξ∈(x
1
,x
2
)使得l=f(ξ)一ξf’(ξ)←→xf’(x)一f(x)+l在(x
1
,x
2
)存在零点←→f’(x)一
在(x
1
,x
2
)存在零点
在(x
1
,x
2
)存在零点
在(x
1
,x
2
)存在零点.
转载请注明原文地址:https://kaotiyun.com/show/Ipg4777K
0
考研数学一
相关试题推荐
求x2y″一xy′+y=x+的通解.
设S为圆锥面z=被曲面x2+y2=2ax(a>0)所截下部分,则曲面积分I=(xy+yz+zx)dS=__________.
设A,B均为n阶实对称矩阵,则A与B合同的充分必要条件是().
若视∑为曲面x2+y2+z2=a2(y≥0,z≥0)的上侧,则当f(x,y,z)为下述选项中的函数(),曲线积分f(x,y,z)dydz=0.
求抛物线y2=4x与直线y=-2x+4所围成的均匀薄片的形心.
设A是三阶矩阵,α1=[1,2,-2]T,α2=[2,1,-1]T,α3=[1,1,t]T是线性非齐次方程组AX=b的解向量,其中b=[1,3,一2]T,则().
设曲线y=ax2(x≥0,常数a>0)与曲线y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D。(Ⅰ)求D绕x轴旋转一周所成的旋转体的体积V(a);(Ⅱ)求a的值,使V(a)为最大。
定积分=()
设ξ,η是两个相互独立且服从同一分布的随机变量,已知ξ的分布率为P{ξ=i}=,i=1,2,3。又设X=max(ξ,η),Y=min(ξ,η)。(Ⅰ)写出二维随机变量的分布律:(Ⅱ)求随机变量X的数学期望E(X)。
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f"(x)≥k(k>0),则f(x)在(a,+∞)内的零点个数为().
随机试题
良性高血压脑出血最常见于
患者男性,34岁,呼吸困难,下肢浮肿,心电图示T波异常,X线示心影增大和肺淤血,超声提示全心扩大,左心室呈“球形”扩大,左室射血分数为35%最可能的诊断是
A.4~6mg/(kg•min)B.6~8mg/(kg•rain)C.0.5U/(kg•d)D.0.2~0.4ml/kgE.2ml/kg无症状性低血糖,若不能进食纠正,应静脉输注葡萄糖的速度是
背景某机场经过合法的招投标程序,将航站楼通风管路的安装工程和行李处理系统的建设工程,分别承包给国内某建筑安装公司A和国外某设备公司B。按照合同要求某处应先安装行李传送带,后安装送风管。但因工期紧工程量大,机场方要求A、B方尽量将工期往前赶。在施工过程中,
下列不属于内部会计监督制度的基本要求的是()。
下列说法不正确的是()。
______(正如我们强调的那样)manytimes,"servethepeople"isourfirstpolicy.(stress)
Theroleofgovernmentsinenvironmentalmanagementisdifficultbutinescapable.Sometimes,thestatetriestomanagetheresou
AnIntelligentCarDrivingneedssharpeyes,keenears,quickbrain,andcoordinationbetweenhandsandthebrain.Manyhumandr
A、TheWaterfallGarden.B、Thetheatre.C、TheWaterWorld.D、TheOceanPark.D细节辨认题。问题询问哪个景点周末10点开放,根据Itopensat10o’clockin
最新回复
(
0
)