首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设连续型随机变量X1,X2的分布函数为F1(x),F2(x),概率密度为f1(x),f2(x),若随机变量X的分布函数为F(x)=aF1(x)+bF2(x)(a,b为常数),X的概率密度为f(x),且EX,EX1,EX2均存在,下列4个等式: ①a
设连续型随机变量X1,X2的分布函数为F1(x),F2(x),概率密度为f1(x),f2(x),若随机变量X的分布函数为F(x)=aF1(x)+bF2(x)(a,b为常数),X的概率密度为f(x),且EX,EX1,EX2均存在,下列4个等式: ①a
admin
2021-04-16
56
问题
设连续型随机变量X
1
,X
2
的分布函数为F
1
(x),F
2
(x),概率密度为f
1
(x),f
2
(x),若随机变量X的分布函数为F(x)=aF
1
(x)+bF
2
(x)(a,b为常数),X的概率密度为f(x),且EX,EX
1
,EX
2
均存在,下列4个等式:
①a+b=1;
②f(x)=af
1
(x)+bf
2
(x);
③EX=aEX
1
+bEX
2
;
④X=aX
1
+bX
2
。
其中必成立的个数为( )
选项
A、1
B、2
C、3
D、4
答案
C
解析
由分布函数的性质知F(+∞)=aF
1
(+∞)+bF
2
(+∞)=a+b=1,①成立。
X的分布函数为F(x)=aF
1
(x)+bF
2
(x),两边求导得f(x)=af
1
(x)+bf
2
(x),②成立,由∫
-∞
+∞
xf(x)dx=∫
-∞
+∞
x[af
1
(x)+bf
2
(x)]dx=a∫
-∞
+∞
xf
1
(x)dx+b∫
-∞
+∞
xf
2
(x)dx,故EX=aEX
1
+bEX
2
,③成立。
④不一定成立,反例如下:
若X
1
~N(0,1),X
2
~N(0,1)且X
1
,X
2
相互独立,当a=b=0.5时,F(x)=0.5F
1
(x)+0.5F
2
(x)=0.5φ(x)+0.5φ(x)=φ(x),故X~N(0,1).
而0.5X
1
+0.5X
2
~N(0,0.5),X≠0.5X
1
+0.5X
2
,故必成立3个等式,选C。
转载请注明原文地址:https://kaotiyun.com/show/Ipx4777K
0
考研数学三
相关试题推荐
求微分方程(x一2xy—y2)y’+y2=0,y(0)=1的特解.
[*]
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量U=X+Y的方差.
设二次型f(x1,x2,x3)=(x1,x2,x3)已知它的秩为1.①求a和二次型f(x1,x2,x3)的矩阵.②作正交变换将f(x1,x2,x3)化为标准二次型.
设随机变量X与Y都服从0-1分布,且X,Y相互独立,P(X=0,Y=0)一1/6,P(X=1,Y=0)=1/12,P(X=0,Y=1)=a,P(X=1,Y=1)=b,则().
设方程exy+Y2=cosx确定y的x的函数,则
设函数y=y(x)由参数方程x=t一In(1+t),y=t3+t2所确定,则
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明:都是参数θ的无偏估计量,试比较其有效性.
设f(x)在[a,b]上二阶可导,且f(x)>0,下面不等式f(a)(b一a)<∫abf(x)dx<(b—a)成立的条件是()
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
随机试题
清洁定子绕组、转子绕组及电刷时,可用清洁的布(或棉纱)蘸少量的()擦洗。
中国早期接受、宣传马克思主义的主要是
患者男,30岁。出现急性发作的畏寒、高热并咳大量脓臭痰,叩诊呈浊音,听诊呼吸音减低,经诊断考虑为血源性肺脓肿。该病最常见的致病菌是
下列疾病中,临床可出现尿闭、尿淋漓现象的是()。
A.阴道前后壁修补术B.Manchester手术C.LeFort术D.子宫悬吊术E.经阴道子宫全切除+阴道前后壁修补术年龄较大无生育要求、Ⅱ、Ⅲ度子宫脱垂伴阴道前后壁脱垂的患者宜采用的手术方式是
污染水体中水蚤的颜色与清洁水体中的比较,结果是()。
经该饮料厂索赔,卖方将出现质量问题的零件的赔付品空运至贵州,以下关于赔付的零件表述正确的是()
不是说个体只有组成集体,才能成为中国梦的主体,而是每一个个体自身就是中国梦的主体。我们通过集体体现出共同的意识,我们更通过自身体现出个体意识。人民是各种人的集合,每个人都有独特的个性,都有自己的追求,都有自己的理想。这段文字意在说明:
Bellpalsy
Itisatruthuniversallyacknowledged,thatasinglemaninpossessionofagoodfortune,mustbeinwantofawife.However
最新回复
(
0
)