首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x﹢x2﹢…﹢xn-1(n=2,3,…). (I)证明方程fn(x)=0在区间[0,﹢∞)内存在唯一的实根,记为xn; (Ⅱ)求(I)中的{xn)的极限值.
设fn(x)=x﹢x2﹢…﹢xn-1(n=2,3,…). (I)证明方程fn(x)=0在区间[0,﹢∞)内存在唯一的实根,记为xn; (Ⅱ)求(I)中的{xn)的极限值.
admin
2019-06-29
61
问题
设f
n
(x)=x﹢x
2
﹢…﹢x
n-1
(n=2,3,…).
(I)证明方程f
n
(x)=0在区间[0,﹢∞)内存在唯一的实根,记为x
n
;
(Ⅱ)求(I)中的{x
n
)的极限值
.
选项
答案
(I)由f
n
(0)=-1﹤0,f
n
(1)=n-1>0,n=2,3,…,所以f
n
(x)=0在区间(0,1)内存在实根,记为x
n
. 以下证在区间(0,﹢∞)内至多存在一个实根.事实上, f
n
’
(x)=1﹢2x﹢3x﹢…﹢nx
n-1
﹥0,x∈(0,﹢∞). 所以在区间(0,﹢∞)内f
n
(x)=0至多存在一个实根.结合以上讨论至少一个至多一个,所以f
n
(x)=0在区间(0,﹢∞)内存在唯一的实根,且在区间(0,1)内.记此根为x
n
(n=2,3,…). (Ⅱ)欲求[*],先证其存在,为此,证{x
n
}单调减少. 0=f
n
(x
n
)-f
n﹢1
(x
n﹢1
) =(
n
﹢
n
2
﹢…﹢x
n
n
)-(
n﹢1
﹢
n﹢1
2
﹢…﹢x
n﹢1
n
﹢x
n﹢1
n﹢1
) =(x
n
-x
n﹢1
)[1﹢(x
n
﹢
n﹢1
)﹢…﹢(x
n
n-1
﹢x
n
n-2
x
n﹢1
﹢…﹢x
n﹢1
n-1
]-x
n﹢1
n-1
. 由[ ]内为正,等号左边为0,所以x
n
-x
n﹢1
﹥0(n=2,3,…),不然上面等号右边为负,与左边为零矛盾.于是知{x
n
}随n增加而严格单调减少,且有下界(x
n
﹥0).所以 [*] 另一方面,由x
n
﹤x
2
﹤1(n>2),所以0﹤x
n
n
﹤x
2
n
. 但0﹤x
2
﹤1,由夹逼定理知[*]=0. 由0=f
n
(x
n
)=x
n
﹢x
n
2
﹢…﹢x
n
n
-1 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/IsN4777K
0
考研数学二
相关试题推荐
设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T。P为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
已知A,B为三阶方阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵。若B=,求矩阵A。
设矩阵A=,E为三阶单位矩阵。求满足AB=E的所有矩阵B。
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3。求二次型f的矩阵的所有特征值;
设。已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
设函数f(x)=lnx+(Ⅰ)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+<1,证明xn存在,并求此极限。
(Ⅰ)证明方程xn+xn-1+…x=1(n为大于1的整数)在区间(1/2,1)内有且仅有一个实根;(Ⅱ)记(Ⅰ)中的实根为xn,证明xn存在,并求此极限。
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0。若极限f(2x-a)/(x-a)存在,证明:(Ⅰ)在(a,b)内f(x)>0;(Ⅱ)在(a,b)内存在点ξ,使(b2-a2)/∫abf(x)dx=2ξ/f(ξ);(Ⅲ
计算二重积分x(x+y)dxdy,其中D={(z,y)|x2+y2≤2,y≥x2}。
设是某二阶常系数非齐次线性方程的解,则该方程的通解是()
随机试题
阅读材料并回答问题:如何以更好的质量实现经济社会的发展,是我们面临的也是必须要解决好的重大问题。在未来的发展中,资源环境对经济发展已构成严重制约,城乡之间、区域之间、经济与社会之间发展不平衡的矛盾趋于突出,资源相对短期、生态环境脆弱、环境容量不足
mRNA剪接过程中被去除的部分叫做
某猪场2岁种公猪,精神沉郁,步态强拘,拱背,腰部触诊敏感,常做排尿姿势。尿检可见红细胞、白细胞、盐类结晶、肾上皮细胞,该病可能的诊断是()
A.桂枝茯苓丸B.香棱丸C.启宫丸D.开郁种玉汤E.开郁二陈汤
甲河是多国河流,乙河是国际河流。根据国际法相关规则,下列哪些选项是正确的?(2011—卷一—74,多)
根据《建筑工程施工质量验收统一标准》GB50300—2013,建筑工程质量验收的最小单元是()。
根据《中华人民共和国村民委员会组织法》,村务监督委员会成员的产生方式是()。
案例下面是某求助者的WAIS-RC测验结果:根据以上测验得分,可以判断该求助者()
Manythingsmakepeoplethinkartistsareweird.Buttheweirdestmaybethis:artists’onlyjobistoexploreemotions,andyet
Yearsaftertheeconomicrecessionwitnessed_________businessrecoverythroughoutthewholenation.
最新回复
(
0
)