首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x﹢x2﹢…﹢xn-1(n=2,3,…). (I)证明方程fn(x)=0在区间[0,﹢∞)内存在唯一的实根,记为xn; (Ⅱ)求(I)中的{xn)的极限值.
设fn(x)=x﹢x2﹢…﹢xn-1(n=2,3,…). (I)证明方程fn(x)=0在区间[0,﹢∞)内存在唯一的实根,记为xn; (Ⅱ)求(I)中的{xn)的极限值.
admin
2019-06-29
64
问题
设f
n
(x)=x﹢x
2
﹢…﹢x
n-1
(n=2,3,…).
(I)证明方程f
n
(x)=0在区间[0,﹢∞)内存在唯一的实根,记为x
n
;
(Ⅱ)求(I)中的{x
n
)的极限值
.
选项
答案
(I)由f
n
(0)=-1﹤0,f
n
(1)=n-1>0,n=2,3,…,所以f
n
(x)=0在区间(0,1)内存在实根,记为x
n
. 以下证在区间(0,﹢∞)内至多存在一个实根.事实上, f
n
’
(x)=1﹢2x﹢3x﹢…﹢nx
n-1
﹥0,x∈(0,﹢∞). 所以在区间(0,﹢∞)内f
n
(x)=0至多存在一个实根.结合以上讨论至少一个至多一个,所以f
n
(x)=0在区间(0,﹢∞)内存在唯一的实根,且在区间(0,1)内.记此根为x
n
(n=2,3,…). (Ⅱ)欲求[*],先证其存在,为此,证{x
n
}单调减少. 0=f
n
(x
n
)-f
n﹢1
(x
n﹢1
) =(
n
﹢
n
2
﹢…﹢x
n
n
)-(
n﹢1
﹢
n﹢1
2
﹢…﹢x
n﹢1
n
﹢x
n﹢1
n﹢1
) =(x
n
-x
n﹢1
)[1﹢(x
n
﹢
n﹢1
)﹢…﹢(x
n
n-1
﹢x
n
n-2
x
n﹢1
﹢…﹢x
n﹢1
n-1
]-x
n﹢1
n-1
. 由[ ]内为正,等号左边为0,所以x
n
-x
n﹢1
﹥0(n=2,3,…),不然上面等号右边为负,与左边为零矛盾.于是知{x
n
}随n增加而严格单调减少,且有下界(x
n
﹥0).所以 [*] 另一方面,由x
n
﹤x
2
﹤1(n>2),所以0﹤x
n
n
﹤x
2
n
. 但0﹤x
2
﹤1,由夹逼定理知[*]=0. 由0=f
n
(x
n
)=x
n
﹢x
n
2
﹢…﹢x
n
n
-1 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/IsN4777K
0
考研数学二
相关试题推荐
设A为三阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
设矩阵A=相似于矩阵B=。求a,b的值;
设矩阵A=,E为三阶单位矩阵。求满足AB=E的所有矩阵B。
设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=。若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=()
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3。若二次型f的规范形为y12+y22,求a的值。
设。对(Ⅰ)中的任意向量ξ2,ξ3,证明:ξ1,ξ2,ξ3线性无关。
设f(x)是区间[0,π/4]上的单调、可导函数,且满足∫0f(x)(t)dt=∫0ttdt,其中f-1是f的反函数,求f(x)。
(Ⅰ)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b-a);(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3
利用代换y=u/cosx将方程y"cosx-2y’sinx+3ysinx=ex化简,并求出原方程的通解。
设C,C1,C2,C3是任意常数,则以下函数可以看作某个二阶微分方程的通解的是
随机试题
市场定位
工程项目施工合同以付款方式划分为:①总价合同;②单价合同;③成本加酬金合同三种。以承包人所承担的风险从小到大的顺序来排列,正确的是()。
在Excel表中A1单元格键入80,在B1单元格输入条件函数=IF(A1>=80,“GOOD”,IF(A1>=60,“PASS”,“FAIL”)),则B1单元中显示()。
下列命题中,正确的是()
某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?
根据下面材料回答问题。2010年11月份,全国餐饮业实现零售额823.1亿元,比2004年同期增长14.5%,占全社会消费品零售总额的13.9%,其增幅高出社会消费品零售总额4个百分点。预计2011年全年餐饮业零售额将达到8800亿元,2011年
在我国矿藏、水流的所有权属于______。
IntroductoryLecturetoUniversityStudyInordertoadjustwelltouniversitylife,freshmenusuallyhavetounderstandthe
我终于看出了你的心事。
A、Itwillgoforoneyear.B、Itwillgoformorethantwoyears.C、ItalldependsonhowtheyshapeafterChristmas.D、Itwillg
最新回复
(
0
)