首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)连续且满足设函数z=f(3x,x+y),且y=y(x)由(2x+1)y+ey=4x+1确定,求.
已知函数f(x,y)连续且满足设函数z=f(3x,x+y),且y=y(x)由(2x+1)y+ey=4x+1确定,求.
admin
2021-03-10
79
问题
已知函数f(x,y)连续且满足
设函数z=f(3x,x+y),且y=y(x)由(2x+1)y+e
y
=4x+1确定,求
.
选项
答案
因为f(x,y)连续,所以由[*]得f(0,0)=2; 令[*]得f(x,y)-2x-3y-2=ο(ρ), 或者 △z=f(x,y)-f(0,0)=2(x-0)+3(y-0)+ο(ρ), 从而f(x,y)在(0,0)处可微,且f’
1
(0,0)=2,f’
2
(0,0)=3, 将X=0代入(2x+1)y+e
y
=4x+1得y=0; (2x+1)y+e
y
=4x+1两边对x求导得2y+(2x+1)[*] 将x=0,y=0代入得[*] 由[*]=3f’
1
(3x,x+y)+f’
2
(3x,x+y)·[*]得 [*]=3f’
1
(0,0)+f’
2
(0,0)·[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/J784777K
0
考研数学二
相关试题推荐
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx。
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
(00)设A=αβT,B=βTα,其中βT是β的转置.求解方程2B2A2x=A4x+B4x+y
(2005年试题,15)设函数f(x)连续,且f(0)≠0,求极限
如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx.
[2010年]设,已知线性方程组AX=b存在两个不同的解.(I)求λ,a;(Ⅱ)求方程组AX=b的通解.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______.
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
设f(x)在(一∞,+∞)上可导,且对任意x1和x2,当x1>x2时都有f(x1)>f(x2),则().
随机试题
患者高血压病史多年,今晨猝然昏仆,不省人事,目合口张,鼻鼾息微,手撒肢冷,汗多,大小便自遗,肢体软瘫,舌萎,脉细弱或脉微欲绝。应选方
二氧化碳手提式灭火器的构件包括()。
下列舌象变化提示病情好转的是
该病治当:晚期症见喘咳心悸,肢体浮肿,尿少,舌质淡胖,脉沉细,方选:
某患者,饮食稍有不慎即易呕吐,时作时止,纳呆,面色优白,倦怠乏力,喜暖畏寒,四肢不温,口干而不欲饮,大便溏薄,舌质淡,苔薄白,脉濡弱。治其治法是
“孤阴不生,独阳不长”主要说明了阴阳关系的哪一方面
有关合同担保的说法中正确的是()I.合同担保可由当事人本人做出Ⅱ.合同担保可由第三方做出Ⅲ.合同担保必须由第三方做出Ⅳ.合同担保可由公民个人和国家机关做出
若某大学分配给计算机系和自动化系的IP地址块分别为211.112.15.128/26和211.112.15.192/26,聚合后的地址块为()。
Westarttounderstandthattradingsuccessfullyisgoingtotakemoretimeandmoreknowledgethanwe______.
A、Focusingonthegrammarwhilespeaking.B、Usingthelanguagefirstandfocusingonthegrammarlater.C、Graspingthegrammarb
最新回复
(
0
)