首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP。
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP。
admin
2021-01-25
63
问题
设A为三阶矩阵,α
1
,α
2
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
。(Ⅰ)证明α
1
,α
2
,α
3
线性无关;(Ⅱ)令P=(α
1
,α
2
,α
3
),求P
-1
AP。
选项
答案
(Ⅰ)方法一:假设α
1
,α
2
,α
3
线性相关。因为α
1
,α
2
是分别属于不同特征值的特征向量,故α
1
,α
2
线性无关,则α
3
可由α
1
,α
2
线性表出,不妨设α
3
=l
1
α
1
+l
2
α
2
,其中l
1
,l
2
不全为零(若l
1
,l
2
同时为0,则α
3
为0,由Aα
3
=α
2
+α
3
可知α
2
=0,而特征向量都是非零向量,因此矛盾)。 由Aα
1
=一α
1
,Aα
2
=α
2
,得Aα
3
=α
2
+α
3
=α
2
+l
1
α
1
+l
2
α
2
,又Aα
3
=A(l
1
α
1
+l
2
α
2
)=一l
1
α
1
+l
2
α
2
,则一l
1
α
1
+l
2
α
2
=α
2
+l
1
α
1
+l
2
α
2
。 整理得2l
1
α
1
+α
2
=0,则α
1
,α
2
线性相关,矛盾。所以,α
1
,α
2
,α
3
线性无关。 方法二:设存在数k
1
,k
2
,k
3
,使得k
1
α
1
+k
2
α
2
+k
3
α
3
=0, (1) 用A左乘(1)的两边并由Aal=一51,Aa 2—52得 一k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0, (2) (1)一(2)得 2k
1
α
1
一k
3
α
2
=0。 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而k
1
=k
3
=0,代人(1)得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关。 (Ⅱ)记P=(α
1
,α
2
,α
3
),由(Ⅰ)得P可逆,且 AP=A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(一α
1
,α
2
,α
2
+α
3
) =(α
1
,α
2
,α
3
)[*] 所以P
-1
AP=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/JAx4777K
0
考研数学三
相关试题推荐
A,B是两个事件,则下列关系正确的是().
下列函数中是某一随机变量的分布函数的是
A、 B、 C、 D、 C
[2016年]设二次型f(x1,x2,x3)=a(x12+x22+x32)+2x1x2+2x2x3+2x3x1的正、负惯性指数分别为1,2,则().
[2017年]已知矩阵则().
[2006年]设α1,α2,…,αs都是n维列向量,A是m×n矩阵,则()成立.
[2004年]设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时,β可由α1,α2,α3唯一地线性表示,并求出表示式;
设函数f’(x)在[a,b]上连续,且f(A)=0,证明:
设X1,X2,…,X100相互独立且在区间[一1,1]上同服从均匀分布,则由中心极限定理≈________.
随机试题
发病率通常不适用于
女,50岁。因子宫肌瘤行全子宫切除术。术中医生发现患者左侧卵巢有病变应切除,在未征得患者及其家属同意的情况下,将左侧卵巢与子宫一并切除。术后患者恢复良好。该案例中,医生违背的临床诊疗伦理原则是()
药物与血浆蛋白的结合是影响药物分布的因素之一,若一个药与血浆蛋白大量结合将会()。
[2009年第73题]下列关于设计分包的叙述,哪条是正确的?[2009年第73题]
下列各选项中,属于航摄设计书内容的是()。
()会提高公司的资产负债率水平,当公司缺少资金时,不是一种好方法。
根据印花税法律制度的规定,下列各项中,不属于印花税缴纳方法的是()。(2013年)
从本质上来看,文学消费等同于一般的商品消费。()
学生在学习拼音时利用事物的形象记忆,例如m像两个门洞,h像一把小椅子。这种学习策略属于()。
下列关于顺序文件的描述中,正确的是( )。
最新回复
(
0
)