首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP。
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP。
admin
2021-01-25
89
问题
设A为三阶矩阵,α
1
,α
2
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
。(Ⅰ)证明α
1
,α
2
,α
3
线性无关;(Ⅱ)令P=(α
1
,α
2
,α
3
),求P
-1
AP。
选项
答案
(Ⅰ)方法一:假设α
1
,α
2
,α
3
线性相关。因为α
1
,α
2
是分别属于不同特征值的特征向量,故α
1
,α
2
线性无关,则α
3
可由α
1
,α
2
线性表出,不妨设α
3
=l
1
α
1
+l
2
α
2
,其中l
1
,l
2
不全为零(若l
1
,l
2
同时为0,则α
3
为0,由Aα
3
=α
2
+α
3
可知α
2
=0,而特征向量都是非零向量,因此矛盾)。 由Aα
1
=一α
1
,Aα
2
=α
2
,得Aα
3
=α
2
+α
3
=α
2
+l
1
α
1
+l
2
α
2
,又Aα
3
=A(l
1
α
1
+l
2
α
2
)=一l
1
α
1
+l
2
α
2
,则一l
1
α
1
+l
2
α
2
=α
2
+l
1
α
1
+l
2
α
2
。 整理得2l
1
α
1
+α
2
=0,则α
1
,α
2
线性相关,矛盾。所以,α
1
,α
2
,α
3
线性无关。 方法二:设存在数k
1
,k
2
,k
3
,使得k
1
α
1
+k
2
α
2
+k
3
α
3
=0, (1) 用A左乘(1)的两边并由Aal=一51,Aa 2—52得 一k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0, (2) (1)一(2)得 2k
1
α
1
一k
3
α
2
=0。 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而k
1
=k
3
=0,代人(1)得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关。 (Ⅱ)记P=(α
1
,α
2
,α
3
),由(Ⅰ)得P可逆,且 AP=A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(一α
1
,α
2
,α
2
+α
3
) =(α
1
,α
2
,α
3
)[*] 所以P
-1
AP=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/JAx4777K
0
考研数学三
相关试题推荐
设f’’(x)连续,f’(0)=0,=1,则().
an和bn符合下列哪一个条件可由bn发散?()
[2013年]设随机变量X服从标准正态分布N(0,1),则E(Xe2x)=_________.
[2010年]设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上均匀分布的概率密度.若为概率密度,则a,b应满足().
[2015年]设矩阵且A3=O.若矩阵X满足X-XA2-AX+AXA2=E,其中E为三阶单位矩阵,求X.
[2004年]设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时,β可由α1,α2,α3唯一地线性表示,并求出表示式;
[2018年]已知a是常数,且矩阵可经初等列变换化为矩阵求a;
若DX=0.004,利用切比雪夫不等式估计概率P{|X—EX|<0.2}.
设总体X的概率分布为其中θ(0<θ<1/2)是未知参数.利用总体的样本值:3,1,3,0,3,1,2,3.求θ的最大似然估计值.
已知是矩阵的一个特征向量.问A能否相似于对角矩阵?并说明理由.
随机试题
下列哪项不是机会致病菌引起医院感染率上升的原因
痢疾的病位在
工程的概、预算主要发生在()。
督察长连续3次考试成绩不及格的,中国证监会可免除其职务。()
(2014年真题)期刊的栏目设计应该()。
简述当代儿童发展观的基本内容。
决定警察必要性的直接因素是()。
请用不超过200字的篇幅,概括出给定材料所反映的主要问题。要求:全面,有条理,有层次。从政府制定政策的角度,提出解决给定资料所反映问题的对策建议。要求:有针对性,有条理,切实可行。字数不超过350字。
“渐”的作用,就是用每步相差极微极缓的方法来隐蔽时间的过去与事物的变迁的痕迹,使人误认其为恒久不变。这真是造物主骗人的一大诡计!这有一个比喻的故事:某农夫每天朝晨抱了犊而跳过一沟,到田里去工作,夕暮又抱了它跳过沟回家。每日如此,未尝间断。过了一年,犊已渐大
要在Web浏览器中查看某一电子商务公司的主页,应知道()。
最新回复
(
0
)