首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP。
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP。
admin
2021-01-25
80
问题
设A为三阶矩阵,α
1
,α
2
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
。(Ⅰ)证明α
1
,α
2
,α
3
线性无关;(Ⅱ)令P=(α
1
,α
2
,α
3
),求P
-1
AP。
选项
答案
(Ⅰ)方法一:假设α
1
,α
2
,α
3
线性相关。因为α
1
,α
2
是分别属于不同特征值的特征向量,故α
1
,α
2
线性无关,则α
3
可由α
1
,α
2
线性表出,不妨设α
3
=l
1
α
1
+l
2
α
2
,其中l
1
,l
2
不全为零(若l
1
,l
2
同时为0,则α
3
为0,由Aα
3
=α
2
+α
3
可知α
2
=0,而特征向量都是非零向量,因此矛盾)。 由Aα
1
=一α
1
,Aα
2
=α
2
,得Aα
3
=α
2
+α
3
=α
2
+l
1
α
1
+l
2
α
2
,又Aα
3
=A(l
1
α
1
+l
2
α
2
)=一l
1
α
1
+l
2
α
2
,则一l
1
α
1
+l
2
α
2
=α
2
+l
1
α
1
+l
2
α
2
。 整理得2l
1
α
1
+α
2
=0,则α
1
,α
2
线性相关,矛盾。所以,α
1
,α
2
,α
3
线性无关。 方法二:设存在数k
1
,k
2
,k
3
,使得k
1
α
1
+k
2
α
2
+k
3
α
3
=0, (1) 用A左乘(1)的两边并由Aal=一51,Aa 2—52得 一k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0, (2) (1)一(2)得 2k
1
α
1
一k
3
α
2
=0。 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而k
1
=k
3
=0,代人(1)得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关。 (Ⅱ)记P=(α
1
,α
2
,α
3
),由(Ⅰ)得P可逆,且 AP=A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(一α
1
,α
2
,α
2
+α
3
) =(α
1
,α
2
,α
3
)[*] 所以P
-1
AP=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/JAx4777K
0
考研数学三
相关试题推荐
下列结论正确的是().
以下极限等式(若右端极限存在,则左端极限存在且相等)成立的个数是()
[2013年]设随机变量X服从标准正态分布N(0,1),则E(Xe2x)=_________.
[2008年]设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩(A)≤2;
[2013年]设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=___________.
设随机变量X的密度函数为f(x)=(1)求常数A;(2)求X在(0,)内的概率;(3)求X的分布函数F(x).
函数y=ln(1—2x)在x=0处的n阶导数y(n)(0)=________.
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a,b为非零常数,则()
设X1,X2,…,Xn相互独立,且Xi(i=1,2,…)服从参数为λ(>0)的泊松分布,则下列选项正确的是()
设A,B,C是三个两两相互独立的事件,且P(ABC)=0,0<P(C)<1,则下列选项一定成立的是().
随机试题
直接筹资主要有
硬膜外麻醉穿刺操作时不慎刺破硬脊膜,术后最容易出现
男性,40岁。病史2周,发热,皮肤有出血点,骨髓原始细胞>80%,过氧化物酶(++),Auer小体(+)。最可能的诊断是
关于胃的形态描述,错误的是
在开放积极条件下,一个国家国民生产总值由()四部分构成。
我国通过采用国债投资等多种措施推动经济结构调整和产业机构升级,促使我国的经济增长模式逐步由()转变。
谋求世界各国经济共同发展的根本途径是()。
TheAsiantigermomthatAmyChuaportraysinhernewbookmayseemlikejustonemorespeciesinthegenusExtremeParent—the
•Readthearticlebelowaboutsuccessfule-mailnegotiation.•Choosethebestsentencefromtheoppositepagetofilleachofth
Overthepastdecade,significantresearchhasdemonstratedwhatmanyhaveknownforalongtime:womenarecriticaltoeconomic
最新回复
(
0
)