首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]_k--阶可导,且|f”(x)|≤1(x∈[0,1]),又f(0)=f(1),证明: |f’(x)|≤(x∈[0,1]).
设f(x)在[0,1]_k--阶可导,且|f”(x)|≤1(x∈[0,1]),又f(0)=f(1),证明: |f’(x)|≤(x∈[0,1]).
admin
2019-11-25
81
问题
设f(x)在[0,1]_k--阶可导,且|f”(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:
|f’(x)|≤
(x∈[0,1]).
选项
答案
由泰勒公式得 f(0)=f(x)-f’(x)x+[*]f”(ξ
1
)x
2
,ξ
1
∈(0,x), f(1)=f(x)+f’(x)(1-x)+[*]f”(ξ
2
)(1-x)
2
,ξ
2
∈(x,1), 两式相减,得f’(x)=[*]f”(ξ
1
)x
2
-[*]f”(ξ
2
)(1-x)
2
. 两边取绝对值,再由|f”(x)|≤1,得|f’(x)|≤[*][x
2
+(1-x)
2
]=(x-[*])
2
+[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/JBD4777K
0
考研数学三
相关试题推荐
设D是由曲线y=sinx+1与三条直线x=0,x=π,y=0所围成的曲边梯形,求D绕x轴旋转一周所围成的旋转体的体积.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设y=,则y’|x=0=______.
若f(x)在点x0处可导,则|f(x)|在点x0处()
设函数f(x)在[a,b]上连续(a,b>0),在(a,b)内可导,且f(a)≠f(b).证明:存在η,ξ∈(a,b),使得
求函数y=excosx的极值.
设随机变量X服从泊松分布,且P{X≤1}=4P{X=2},则P{X=3}=_______.
已知曲线y=y(x)经过点(1,e-1),且在点(x,y)处的切线在y轴上的截距为xy,求该曲线方程的表达式.
设A是m×n阶矩阵,试证明:(Ⅰ)如果A行满秩(r(A)=m),则对任何m×s矩阵C,矩阵方程AX=C都有解。(Ⅱ)如果A列满秩(r(A)=n),则存在n×m矩阵B,使得BA=E(E是n阶单位矩阵)。
某人衣袋中有两枚硬币,一枚是均匀的,另一枚两面都是正面.(I)如果他随机取一枚抛出,结果出现正面,则该枚硬币是均匀的概率为______;(Ⅱ)如果他将这枚硬币又抛一次,又出现正面,则该枚硬币是均匀的概率为______.
随机试题
Teamworkplaysanimportantpartinourdailylifeandwork,butsometimesproblemswillarisewhenweareteamingup.Istillr
肠梗阻的部位越高,呕吐越______,腹胀越______。
关于GOD-POD偶联测定法测定葡萄糖说法错误的有()
熔断器的选择原则有()。
设3阶矩阵已知A的伴随矩阵的秩为2,则a=()。[2011年真题]
改性沥青混合料摊铺系数应通过()取得。
设栈S和队列Q的初始状态为空,元素e1,e2,e3,e4,e5和e6依次通过栈S,1个元素出栈后即进队列Q,若6个元素出队的序列是e2,e4,e3,e6,e5,e1,则栈S的容量至少应该是()。
根据以下资料,回答以下问题。2012年年末,合肥市规模以上工业企业2087户,全年实现工业增加值1653.54亿元,比上年增长17.4%。其中,轻工业增加值653.28亿元,增长16.5%;重工业增加值1000.26亿元,增长18%。战略性新兴产
下列关于商誉特点的叙述中,错误的是()。
当a为何值时,线性方程组有解,并求出其通解.
最新回复
(
0
)