首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
admin
2019-03-14
66
问题
设α
1
,α
2
,α
3
是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
,c表示任意常数,则线性方程组Ax=b的通解x=
选项
A、
B、
C、
D、
答案
C
解析
由Ax=b的解的结构知关键在于求出Ax =0的基础解系,由于Ax=0的基础解系所含解向量个数为4一秩(A)=4一3=1,因此Ax=0的任意一个非零解都可作为Ax=0的基础解系,易知ξ=2α
1
一(α
2
+α
3
)=(2,3,4,5)
T
是Ax=0的一个非零解,故ξ可作为Ax=0的基础解系,所以,Ax=b的通解为x=α
t
+ cξ.只有选项(C)正确.
转载请注明原文地址:https://kaotiyun.com/show/JKj4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annkf(A)的对角线元素
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(I)Ax=0和(Ⅱ)ATAx=0,必有()
设矩阵,当k为何值时,存在可逆矩阵P,使得P一1AP为对角矩阵?并求出P和相应的对角矩阵。
设f(x)=∫-12t|t|dt(x≥一1),求曲线y=f(x)与戈轴所围封闭图形的面积。
设A,B是n阶矩阵,证明:AB和BA的主对角元的和相等.(方阵主对角元的和称为方阵的迹,记成trA,即
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,aα2,…,αs,β中任意s个向量线性无关.
设区域D由曲线y=smx,x=(xy5一1)dxdy=
设平面图形A由x2+y2≤2x及y≥x所确定,则A绕直线x=2旋转一周所得旋转体的体积公式为().
函数的定义域为_____________.
随机试题
找出这辆故障车有哪种违法行为?
发现法的倡导者是
A.《黄帝内经》B.《河问六书》C.《景岳全书》D.《丹溪心法》“诸风掉眩,皆属于肝”的论点出自何书
患者夜间右侧牙痛不能眠来急诊。牙痛涉及右侧牙和面颞部,查见龋深。患者右侧面和颞部痛的性质属于
A.阈刺激B.阈强度C.阈电位D.锋电位E.后去极化衡量组织兴奋性高低的常用指标是()
根据《担保法》的规定,下列关于保证的表述中正确的有()。(2008年多项选择第58题)
中国人自己最早开办的保险公司是()。
2017年8月24日,全国工商联发布《2017中国民营企业500强》榜单。2016年,民营企业500强出口总额出现大幅回升,达到1495.4亿美元,占我国出口总额的7.17%,较2015年增加395.79亿美元,增幅为35.99%,海外投资项目达到1659
我国刑法分则将犯罪划分为十大类罪名,其划分的根据是()。
ThestaywilloffertwoluckyguestsaglimpseatwhatlifeasaCrawleymayhavebeenlike.Theonce-in-aTifetimestaywillta
最新回复
(
0
)