首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知m个向量α1,αm线性相关,但其中任意m一1个向量都线性无关,证明: (Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数后k1,…,km或者全为零,或者全不为零; (Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则其中
已知m个向量α1,αm线性相关,但其中任意m一1个向量都线性无关,证明: (Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数后k1,…,km或者全为零,或者全不为零; (Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则其中
admin
2019-01-05
55
问题
已知m个向量α
1
,α
m
线性相关,但其中任意m一1个向量都线性无关,证明:
(Ⅰ)如果等式k
1
α
1
+…+k
m
α
m
=0成立,则系数后k
1
,…,k
m
或者全为零,或者全不为零;
(Ⅱ)如果等式k
1
α
1
+…+k
m
α
m
=0和等式l
1
α
1
+…+l
m
α
m
=0都成立,则
其中l
1
≠0。
选项
答案
(Ⅰ)假设存在某个k
i
=0,则由k
1
,α
1
+…+k
m
α
m
=0可得 k
1
α
1
+…+k
i—1
α
i—1
一1+k
i+1
α
i+1
+…+k
m
α
m
=0。 (1)因为任意m一1个向量都线性无关,所以必有k
1
=…=k
i—1
=k
i+1
=…=k
m
=0,即系数k
1
,…,k
m
全为零。 所以系数k
1
,…,k
m
或者全为零,或者全不为零。 (Ⅱ)由(Ⅰ)可知,当l
1
≠0时,系数l
1
,…,l
m
全不为零,所以 [*] 将其代入(1)式得 [*] 又因为任意m一1个向量都线性无关,所以[*]k
1
+k
2
=…=[*]k
1
+k
m
=0,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JSW4777K
0
考研数学三
相关试题推荐
已知矩阵A=有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q—1AQ=A。
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是()
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,—1,a+2,1)T,α2=(—1,2,4,a+8)T(Ⅰ)求方程组(1)的一个基础解系;(Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非
设A=有二重特征根,则a=________。
齐次方程组有非零解,则A=________。
设随机变量X和Y的相关系数为0.9,若Z=2X—1,则Y与Z的相关系数为________。
设z=f(x+y,x—y,xy),其中f具有二阶连续偏导数,求dz与
设X1,X2,…,Xm是取自正态总体N(0,σ2)的简单随机样本,X与S2分别是样本均值与样本方差,则()
若极限则函数f(x)在x=a处
设函数z=f(χ,y)在点(1,1)处可微,且f(1,1)=1,=3,φ(χ)=f(χ,f(χ,χ)).求=_______.
随机试题
住院中发生阑尾炎穿孔性腹膜炎和肝脓肿穿破性肺脓肿属于医院感染。()
板状腹见于
急性腹膜炎最主要的临床表现
A.化学特性B.生物效应特性C.热作用D.荧光作用E.电离作肿瘤放射治疗的基础是
关于子宫收缩乏力性产后出血首选的处理是
新中国成立后,国家立即对旧中国的保险市场进行了整顿和改造,主要措施有:接管和清理官僚资本保险公司,整顿和改造外资保险公司,排挤民族资本的保险公司。()
【背景资料】某石油化工装置进行工程招标,某一施工单位根据招标方提供的实物量清单进行投标并中标。签订工程合同后,由于工程急于开工,该施工单位在未收到施工图纸的情况下,即进行了施工组织设计的编制,施工单位在原投标书的基础上,只是进行了格式和内容的简单调整,即
假设某企业既有权益融资又有债务融资,若只有此企业的税前利润为已知,根据无公司税的MM定理,则只需再得到( )即可求出企业的价值。
旅游过程中,游客提出变更路线或日程的要求,导游人员原则上应()。
Oneofthemostcontentiousissuesinthevastliteratureaboutalcoholconsumptionhasbeentheconsistentfindingthatthosew
最新回复
(
0
)