首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知m个向量α1,αm线性相关,但其中任意m一1个向量都线性无关,证明: (Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数后k1,…,km或者全为零,或者全不为零; (Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则其中
已知m个向量α1,αm线性相关,但其中任意m一1个向量都线性无关,证明: (Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数后k1,…,km或者全为零,或者全不为零; (Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则其中
admin
2019-01-05
86
问题
已知m个向量α
1
,α
m
线性相关,但其中任意m一1个向量都线性无关,证明:
(Ⅰ)如果等式k
1
α
1
+…+k
m
α
m
=0成立,则系数后k
1
,…,k
m
或者全为零,或者全不为零;
(Ⅱ)如果等式k
1
α
1
+…+k
m
α
m
=0和等式l
1
α
1
+…+l
m
α
m
=0都成立,则
其中l
1
≠0。
选项
答案
(Ⅰ)假设存在某个k
i
=0,则由k
1
,α
1
+…+k
m
α
m
=0可得 k
1
α
1
+…+k
i—1
α
i—1
一1+k
i+1
α
i+1
+…+k
m
α
m
=0。 (1)因为任意m一1个向量都线性无关,所以必有k
1
=…=k
i—1
=k
i+1
=…=k
m
=0,即系数k
1
,…,k
m
全为零。 所以系数k
1
,…,k
m
或者全为零,或者全不为零。 (Ⅱ)由(Ⅰ)可知,当l
1
≠0时,系数l
1
,…,l
m
全不为零,所以 [*] 将其代入(1)式得 [*] 又因为任意m一1个向量都线性无关,所以[*]k
1
+k
2
=…=[*]k
1
+k
m
=0,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JSW4777K
0
考研数学三
相关试题推荐
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3由α1,α2,α3线性表示。
设方程xn+nx—1=0,其中n为正整数。证明此方程存在唯一正实根xn,并证明当α>1时,级数xnα收敛。
[*]
设x为三维单位列向量,E为三阶单位矩阵,则矩阵E—xxT的秩为________。
设A是三阶矩阵,其特征值是1,3,—2,相应的特征向量依次是α1,α2,α3,若P=(α1,2α3,α2),则P—1AP=()
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α2=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,—1,—1,1)T,β2=(1,—1,1,—1,2)T,β3
设总体X与Y都服从正态分布N(0,σ2),已知X1,X2,…,Xm与Y1,Y2,…,Yn是分别取自总体X与Y的两个相互独立的简单随机样本,统计量Y=服从t(n)分布,则等于()
设X1,X2,…,Xn(n>2)为取自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi—,i=1,2,…,n。求:(Ⅰ)Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)Y1与Yn的协方差Cov(Y1,Yn)。
将函数f(x)=展开成x—1的幂级数,并指出其收敛区间。
求幂级数的收敛区间与和函数f(x)。
随机试题
患者,男,21岁。大便秘结2个月,近5天仅如厕1次,粪如羊屎,燥结难下,口臭,喜冷饮,身热烦躁,舌苔黄燥,脉滑实。治疗除取主穴外,还应加
下列哪项不符合新生儿窒息时继发性呼吸暂停的改变
A.药品信息B.戒毒药品信息C.医疗器械信息D.药品广告可以在提供互联网药品信息服务的网站上发布,但其内容应经药品监督管理部门审查批准的是()。
阻生齿
一次事故中死亡职工1~2人的事故属于( )事故。
统计图中的()可以反映数据的分布,在投资实践中被演变成著名的K线图。
甲公司是ABC会计师事务所的审计客户。A注册会计师负责审计甲公司2015年度财务报表,确定财务报表整体的重要性为160万元。资料一:A注册会计师在审计工作底稿中记录了所了解的甲公司情况及其环境,部分内容摘录如下:(1)2015年,甲公司主
陈飞羽上了初中以后,情绪变得容易激动,思想比较敏感,格外在意别人对自己的评价。这表明他出现了初中生心理发展的()特点。
下列成语与佛教有关的是:
常言道,人生不如意事常八九。倘若心为物役,患得患失,就只会被悲观、绝望窒息心智,人生的路途也注定如负重登山,________。填入画横线部分最恰当的一项是:
最新回复
(
0
)