首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中, (1)A2 (2)P—1AP (3)AT (4) α肯定是其特征向量的矩阵共有( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中, (1)A2 (2)P—1AP (3)AT (4) α肯定是其特征向量的矩阵共有( )
admin
2019-03-23
75
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中,
(1)A
2
(2)P
—1
AP
(3)A
T
(4)
α肯定是其特征向量的矩阵共有( )
选项
A、1个。
B、2个。
C、3个。
D、4个。
答案
B
解析
由题意Aα=λα,α≠0,于是有A
2
α=A(λα)=λAα=λ
2
α,α≠0,即α必是A
2
属于特征值λ
2
的特征向量。
知α必是矩阵
属于特征值
的特征向量。故选B。
对于(2)和(3)则不一定成立。这是因为
(P
—1
AP)(P
—1
α)=P
—1
Aα=λP
—1
α,
依定义,矩阵P
—1
AP的特征向量是P
—1
α。由于P
—1
α与α不一定共线,因此α不一定是P
—1
AP的特征向量,即相似矩阵的特征向量是不一样的。
线性方程组(λE—A)x=0与(λE—A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量。
转载请注明原文地址:https://kaotiyun.com/show/JTV4777K
0
考研数学二
相关试题推荐
若函数f(x,y)对任意正实数t,满足f(tx,ty)=tnf(x,y),(7.12)称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)-1=E+B(E-AB)-1A.
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型(1)用矩阵乘积的形式写出此二次型.(2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
用配方法化下列二次型为标准型(1)f(x1,x2,x3)=x12+2x22+2x1x2-2x1x3+2x2x3.(2)f(x1,x2,x3)=x1x2+x1x3+x2x3.
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则()正确。
设A为n阶正交矩阵,α和β都是n维实向量,证明:(1)内积(α,β)=(Aα,Aβ).(2)长度‖Aα‖=‖α‖.
设α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10).①求r(α1,α2,α3,α4,α5).②求一个最大线性无关组,并且把其余向量用它线性表示.
设n(n≥3)阶方阵A=的秩为n-1,则a=________.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
现有四个向量组①(1,2,3)T,(3,一1,5)T,(0,4,一2)T,(1,3,0)T;②(a,1,6,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,1,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
随机试题
我国《刑法》第13条规定,“情节显著轻微危害不大的,不认为是犯罪”。这是指()
体内的铁主要分布在下列哪一项中
典型患者存在中间清醒期的是()
下列关于国有独资公司的说法正确的是()。
下列属于我国大型商业银行的是()。
周师傅上班骑自行车,下班回家步行,一共用70分钟。如果上、下班都骑自行车要用40分钟。如果周师傅上下班都步行要多长时间?()
Protestantism
文艺作品是大众的精神粮食。不干净的食品会影响人的身体健康,不干净的文艺作品,则会影响人的心理健康。近年“庸俗、低俗、媚俗”的“三俗”文化不断刺激着中国人的神经。对待“三俗”文化,关键是要
AviationfuelemergedasthelargestsourceofleademissionsintheU.S.onceleadwasphasedoutofautomotivegasolinebegin
AsdefinedbyGreekphilosophersandancientIndianphilosophers,musicisviewedastonesorderedhorizontallyasmelodiesand
最新回复
(
0
)