首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=讨论f(x)与g(x)的极值.
设f(x)=讨论f(x)与g(x)的极值.
admin
2018-06-27
46
问题
设f(x)=
讨论f(x)与g(x)的极值.
选项
答案
(Ⅰ)对于f(x):当x>0时f’(x)=e
x
>0,从而f(x)在(0,+∞)内无极值. 当x<0时f’(x)=(x+1)e
x
,令f’(x)=0,得x=-1.当x<-1时f’(x)<0,当-1<x<0时f’(x)>0,故f(-1)=-e
-1
为极小值. 再看间断点x=0处,当x<0时f(x)=xe
x
<0=f(0);当x>0且x充分小时,f(x)=e
x
-2<0,故f(0)=0为极大值. (Ⅱ)对于g(x):当x>0时g’(x)=-e
x
<0,从而g(x)在(0,+∞)内无极值. 当x<0时与f(x)同,g(-1)=-e
-1
为极小值. 在间断点x=0处g(0)=-1.当x>0时g(x)<-1;当x<0且|x|充分小时g(x)为负值且|g(x)|<1,从而有g(x)>-1.故g(0)非极值.
解析
转载请注明原文地址:https://kaotiyun.com/show/JZk4777K
0
考研数学二
相关试题推荐
设D={(x,y)|x2+y2≤1},证明不等式
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f’’(ξ)=一4.
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组[α1+α2+α3+β,α1,α2,α3]x=β有无穷多解,并求其通解.
设证明:f(x,y)在点(0,0)处不可微.
设矩阵,E为2阶单位矩阵,矩阵B满足BA=B+2E,则|B|=________.
设p(x),q(x),f(x)均是x的已知连续函数,y1(x),y2(x),y3(x)是y’’+p(x)y’+q(x)y=f(x)的3个线性无关的解,C1,C2是两个任意常数,则该非齐次方程对应的齐次方程的通解是()
设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要作多少功?(假设在球从水中取出的过程中水面的高度不变.)
设D是xOy平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则(xy+cosxsiny)dσ等于().
已知函数f(x)在[0,]上连续,在(0,)内是函数的一个原函数,且f(0)=0.(Ⅰ)求f(x)在区间[0,]上的平均值;(Ⅱ)证明f(x)在区间(0,)内存在唯一零点.
要建一个圆柱形无盖水池,使其容积为V0m3.底的单位面积造价是周围的两倍,问底半径r与高h各是多少,才能使水池造价最低?
随机试题
腱器官传入冲动增加所引起的效应是
凡是高度危险的物品,必须选用灭菌法灭菌,务使其灭菌指数达到()
川芎为乳香为
在Excel中,通过()可以修改单元内容。
世贸组织的前身是()。
某企业年初从银行贷款100万元,期限1年,年利率为10%,按照贴现法付息,则年末应偿还的金额为()万元。
打开已经存在的表单文件的命令是
Atfirstwewere______amusedbyDon’swords,butsoonweweretiredofthem.
WhichofthefollowingisNOTthepurposeofthesummit?
DoBritain’sEnergyFirmsServethePublicInterest?[A]Capitalismisthebestandworstofsystems.Lefttoitself,itwillemb
最新回复
(
0
)