首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二维随机变量(X,Y)的概率分布为 又P{X=1}=0.5,且X与Y不相关. (Ⅰ)求未知参数a,b,c; (Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么? (Ⅲ)随机变量X+Y与X—Y是否相关,是否独立?
已知二维随机变量(X,Y)的概率分布为 又P{X=1}=0.5,且X与Y不相关. (Ⅰ)求未知参数a,b,c; (Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么? (Ⅲ)随机变量X+Y与X—Y是否相关,是否独立?
admin
2019-05-14
70
问题
已知二维随机变量(X,Y)的概率分布为
又P{X=1}=0.5,且X与Y不相关.
(Ⅰ)求未知参数a,b,c;
(Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么?
(Ⅲ)随机变量X+Y与X—Y是否相关,是否独立?
选项
答案
(Ⅰ)应用联合分布、边缘分布关系及x与y不相关求参数a、b、c. 由于P{X=1}=0.5,故P{X=-1}=0.5,a=0.5—0.1—0.1=0.3. 又X与Y不相关[*]E(XY)=EX.EY,其中EX=(一1)×0.5+1×0.5=0. XY可能取值为一1,0,1,且 P{XY=-1}=P{X=-1,Y=1}+P{X=1,Y=-1}=0.1+b, P{XY=1}=P{x=1,Y=1}+P{X=-1,Y=-1}=0.1+c, P{XY=0}=P{X=-1,Y=0}+P{X=1,Y=0}=a+0.1, 所以E(XY)=-0.1-b+0.1+c=c-b,由E(XY)=EXEY=0[*]c-b=0,b=c, 又b+0.1+c=0.5,所以b=c=0.2. (Ⅱ)由于A={X=1}[*]B={max(X,Y)=1},P(AB)=P(A)=0.5,0<P(B)<1,又 P(A)P(B)=0.5P(B)<0.5=P(AB),即P(AB)≠P(A)P(B),所以A与B不独立. (Ⅲ)因为Cov(X+Y,X—Y)=Cov(X,X)一Cov(X,Y)+Coy(Y,X)一Cov(Y,Y)=DX—DY, DX=EX
2
一(EX)
2
=1,EY=0,DY=EY
2
一(EY)
2
=0.6, 所以Cov(X+Y,X—Y)=1—0.6=0.4≠0,X+Y与X一Y相关[*]X+Y与X—Y不独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/Je04777K
0
考研数学一
相关试题推荐
设f(x)=,则()
计算曲面积分I=2x3dydz+2y3dzdx+3(z2一1)dxdy,其中∑是曲面z=1一x2一y2(z≥0)的上侧。
在x=1处将函数f(x)=展成幂级数。
判别级数的敛散性。
求幂级数的和函数。
设bn为两个正项级数。证明:若an收敛。
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数。(Ⅰ)证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有(Ⅱ)求函数φ(y)的表达式。
设随机变量X与Y的联合密度为其中D是由两坐标轴与直线χ+y-1=0所围有界平面区域(如图9—1).求X与Y的相关系数.
设随机变量X服从二项分布B(n,p),随机变量Y为求:(Ⅰ)Y的概率分布;(Ⅱ)Y的期望EY与方差DY.
已知向量组β1=,β2=,β3=与向量组α1=,α2=,α3=有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
随机试题
关于锁骨下动脉窃血综合征椎动脉血流频谱特点,正确的是
蛔虫病以腹痛为主要症状,其疼痛部位主要是
技术效果后评价主要关注技术的()。
《流动性风险管理和监督的稳健原则》构建的流动性风险监管制度框架包括()。
商业银行销售管理理财产品(计划)时,应当()。
根据《中华人民共和国仲裁法》,关于仲裁协议的说法,正确的是()。
关于价格歧视基本条件的说法,正确的是()。
甲企业于2016年1月1日向银行借入一笔生产经营用短期借款,共计600000元,期限为9个月,年利率为5%。根据与银行签署的借款协议,该项借款的本金到期后一次归还;利息分月预提,按季支付。要求:编制甲企业1月末计提利息的会计分录。
维特根斯坦是剑桥大学著名哲学家穆尔的学生。有一天,哲学家罗素问穆尔:“你最好的学生是谁?”穆尔毫不犹豫地说:“维特根斯坦。”“为什么?”“因为在所有学生中,只有他听课时总是露出一副茫然的神色,而且总有问不完的问题。”后来,维特根斯坦的名气超过了罗素。有人问
假设随机变量X的密度函数f(x)=ce-λ|x|(λ>0,一∞<x<+∞),Y=|X|.(I)求常数c及EX,DX;(Ⅱ)问X与Y是否相关?为什么?(Ⅲ)问X与Y是否独立?为什么?
最新回复
(
0
)