首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:aχ+2by+3c=0 l2:bχ+2cy+3a=0 l3:cχ+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条不同直线的方程分别为 l1:aχ+2by+3c=0 l2:bχ+2cy+3a=0 l3:cχ+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2017-06-26
62
问题
已知平面上三条不同直线的方程分别为
l
1
:aχ+2by+3c=0
l
2
:bχ+2cy+3a=0
l
3
:cχ+2ay+3b=0
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
考虑由三直线方程联立所得线性方程组 [*] 则三直线交于一点[*]方程组(*)有惟一解[*]=2, 其中[*] 必要性,由[*]=3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
]=0,又a、b、c不全相等(否则三直线重合,从而有无穷多交点,与必要性假定交于一点矛盾), [*]a+b+c=0.充分性 若a+b+c=0, 由必要性证明知|[*]|=0,故r([*])<3.又系数矩阵A中有一个2阶子式 [*] 则方程组(*)有惟一解,即三直线交于一点.
解析
转载请注明原文地址:https://kaotiyun.com/show/JjH4777K
0
考研数学三
相关试题推荐
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=,其中A的逆矩阵为B,则a=_________.
微分方程的通解是_________.
设n阶矩阵A与B等价,则必有().
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
在经济学中,称函数Q(x)=A[δK-x+(1-δ)L-x]-(1/x)为固定替代弹性生产函数,而称函数生产函数(简称C-D生产函数).试证明:当x→0时,固定替代弹性生产函数变为C-D生产函数,即有
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
设向量组(Ⅰ)a1,a2,…,as,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i:1,2,…,s)均可以由a1,…,as线性表示,则().
设矩阵A=,且|A|=-1.又设A的伴随矩阵A*,属于λ0的特征向量为a=(-1,-1,1)T,求a,b,c及λ0的值.
随机试题
Sinceitsfoundingin1948,McDonald’shasgrownfromafamilyburger(汉堡包)standtoaglobalfast-foodchain,withmorethan30,
A.限制水、钠摄入B.5%碳酸氢钠溶液滴注C.保持水、电解质平衡D.静滴10%葡萄糖溶液E.行透析急性肾功能不全少尿期()
关于低压滑环技术的叙述,错误的是
进行多方案经济效果评价时,下列做法中正确的有()。
水喷雾灭火系统的水雾喷头常见的雾化角有()。
自动进口许可证管理,有效期为1年,特殊情况需要跨年度使用的,有效期最长不得超过次年3月31日。()
对着电视画面拍照,应关闭照相机闪光灯和室内照明灯,这样照出的照片画面更清晰。这是因为:
“教育学作为一种科学,是以实践哲学和心理学为基础的。前者说明教育的日的,后者说明教育的途径、手段与障碍。”这一论断出自
Itshouldnotbeasurprise.Lonelinessandsocialisolationareontherise,【C1】______manytocallitanepidemic.Inrecentde
Itishardtotrackthebluewhale,theocean’slargestcreature,whichhasalmostbeenkilledoffbycommercialwhalingandis
最新回复
(
0
)