首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:aχ+2by+3c=0 l2:bχ+2cy+3a=0 l3:cχ+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条不同直线的方程分别为 l1:aχ+2by+3c=0 l2:bχ+2cy+3a=0 l3:cχ+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2017-06-26
66
问题
已知平面上三条不同直线的方程分别为
l
1
:aχ+2by+3c=0
l
2
:bχ+2cy+3a=0
l
3
:cχ+2ay+3b=0
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
考虑由三直线方程联立所得线性方程组 [*] 则三直线交于一点[*]方程组(*)有惟一解[*]=2, 其中[*] 必要性,由[*]=3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
]=0,又a、b、c不全相等(否则三直线重合,从而有无穷多交点,与必要性假定交于一点矛盾), [*]a+b+c=0.充分性 若a+b+c=0, 由必要性证明知|[*]|=0,故r([*])<3.又系数矩阵A中有一个2阶子式 [*] 则方程组(*)有惟一解,即三直线交于一点.
解析
转载请注明原文地址:https://kaotiyun.com/show/JjH4777K
0
考研数学三
相关试题推荐
设有三维列向量(Ⅰ)β可由a1,a2,a3,线性表示,且表达式唯一;(Ⅱ)β可由a1,a2,a3线性表示,且表达式不唯一;(Ⅲ)β不能由a1,a2,a3线性表示.
曲线sin(xy)+ln(y-x)=x在点(0,1)处的切线方程为__________.
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
在经济学中,称函数Q(x)=A[δK-x+(1-δ)L-x]-(1/x)为固定替代弹性生产函数,而称函数生产函数(简称C-D生产函数).试证明:当x→0时,固定替代弹性生产函数变为C-D生产函数,即有
曲线在点(0,1)处的法线方程为_________.
设线性方程组(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中β1=,写出此方程组的通解.
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时,停用而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
随机试题
甲以20万元从乙公司购得某小区地下停车位。乙公司经规划部门批准在该小区以200万元建设观光电梯。该梯入梯口占用了甲的停车位,乙公司同意为甲置换更好的车位。甲则要求拆除电梯,并赔偿损失。下列哪些表述是错误的?(2013年卷三第51题)
如果抵押房地产是抵押人扶养家属生活的所必需居住房屋,人民法院不得拍卖、变卖或者抵债。[2005年考题]()
子分部工程完成并做检查评定时应参加的单位有()单位。
对于青少年疯狂的追星行为,不少人觉得难以理解,甚至斥为“脑残”。但专家认为,青春期偶像崇拜是青少年走向社会所必经的过程,要理解孩子的内心需求,陪伴和以身作则是最有效的教育方式。这段话主要探讨的是:
《撒马拉斯颂歌》1958年被正式确定为现代奥林匹克运动会永久会歌,并改名《奥林匹克颂歌》。下列关于该会歌的表述错误是:
关于高血压所致靶器官并发症的叙述,错误的是
请对“实行犯都是主犯”这一说法进行辨析。
如果一个公司有1000台主机,则至少需要给它分配(1)个C类网络。为了使该公司的网络地址在路由表中只占一行,给它指定的子网掩码必须是(2)。这种技术叫做(3)技术。(3)
AllI’mtryingtodoisto______whyyourconditionhasnotimproved.
WhenanexpectantmomregularlyeatshermealsinfrontoftheTV,chancesareshe’llcontinuethathabitduringherbaby’sfeed
最新回复
(
0
)