首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[20l0年] 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).
[20l0年] 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).
admin
2019-05-10
41
问题
[20l0年] 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).
选项
A、秩(A)=m,秩(B)=m
B、秩(A)=m,秩(B)=n
C、秩(A)=n,秩(B)=m
D、秩(A)=n,秩(B)=n
答案
A
解析
利用关于矩阵秩的性质即命题2.2.3.1(2)和命题2.2.3.1(10)求之.
因AB=E,由命题2.2.3.1(10)有秩(A),秩(B)≥秩(AB)=秩(E)=m.又A为m×n矩阵,由命题2.2.3.1(2)知秩(A)≤m,同理,因B为n×m矩阵,有秩(B)≤m.因而
m≤秩(A)≤m, m≤秩(B)≤m,
则秩(A)=m,秩(B)=m.仅(A)入选.
转载请注明原文地址:https://kaotiyun.com/show/JjV4777K
0
考研数学二
相关试题推荐
证明:当χ>0时,(χ2-1)lnx≥(χ-1)2.
设f(χ)在[a,b]上连续,且f〞(χ)>0,对任意的χ1,χ2∈[a,b]及0<λ<1,证明:f[λχ1+(1-λ)χ2]≤λf(χ1)+(1-λ)f(χ2).
设曲线=1(0<a<4)与χ轴、y轴所围成的图形绕z轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设A,B都是n阶可逆矩阵,则().
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
n阶矩阵A满足A2-2A-3E=O,证明A能相似对用化.
设A=,若齐次方程组AX=0的任一非零解均可用α线性表示,则a=().
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
随机试题
A.碱基顺序B.双螺旋C.超螺旋D.核小体E.核糖体核酸的一级结构是
西洋参能
一烧伤患者,其创面脓液呈鲜绿色,有一种特殊的霉腥味,其感染细菌可能为绿脓杆菌。()
严格意义上的期货套利是指利用同一合约在不同市场上可能存在的短暂价格差异进行买卖,赚取价差,这被称为跨市场套利。()
结构性理财产品的主要风险不包括()。
某食品生产企业有软饮料、休闲食品和调味品3个产品系列,每个系列中都有4种产品,该企业产品组合的总长度是()。
按课程管理权限分类,我国中小学课程包括()
自党的十一届三中全会以来,在邓小平理论的指引下,公安工作的重心由“以阶级斗争为纲”转移到了服从和服务于“维护社会稳定”这个中心上来,实现了公安工作指导思想的战略性转变。()
下列关于北斗卫星导航系统的用途,说法不正确的是()。
理念:行动
最新回复
(
0
)