首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. 证明:
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. 证明:
admin
2021-11-25
26
问题
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.
证明:
选项
答案
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Jpy4777K
0
考研数学二
相关试题推荐
设矩阵B的列向量线性无关,且BA=C,则().
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3α一2A2α.证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆;(Ⅱ)BTB是正定矩阵.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T问:(I)a,b取何值时,β不能由α1,α2,α3线性表示?(Ⅱ)a,b取何值时,β可由α1,α2,α3线性表示?并写出此表示式.
证明:当x<1且x≠0时,<1.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2则a1,A(a1+a2)线性无关的充分必要条件是().
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为()
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是()
随机试题
男,48岁。突发呼吸困难,胸痛,晕厥,查体:颈静脉充盈,肺动脉瓣区第二心音亢进,最可能的原因是
患者,男性,18岁。淋雨后感冒,1天后出现寒战、高热,痰液为铁锈色,诊断为肺炎链球菌肺炎,体温持续在38.0~39.5℃,患者的热型呈
商业银行通常采用不定期自我评估的方法,来检验战略风险管理是否有效实施。()(2010年下半年)
下列商品销售,应确认收入的是()。
旅行社在银行存入质量保证金的,应当设立独立账户,存期由旅行社确定,但不得少于2年。()
用数学归纳法证明不等式1+(n≥2,n∈N*)的过程中,由n=k到n=k+1的过程中,左边增加了_______项.
提出“多元智能理论”的是()。
近些年来,每当遇到流行性疾病发生,医学专家都会表示可防、可控、可治,不必过于惊慌,这是因为()。
对公文进行阅读、贯彻执行和办理,使公文产生实际效用,属于公文处理环节中的()。
下面描述中错误的是()。
最新回复
(
0
)