首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)是二阶线性常系数非齐次微分方程y’’+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限=( )
设y=y(x)是二阶线性常系数非齐次微分方程y’’+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限=( )
admin
2019-05-12
81
问题
设y=y(x)是二阶线性常系数非齐次微分方程y’’+Py’+Qy=3e
2x
满足初始条件y(0)=y’(0)=0的特解,则极限
=( )
选项
A、
B、
C、
D、
答案
B
解析
在微分方程y’’+By’+Qy=3e
2x
中,取x=0得
y’’(0)+Py’(0)+Qy(0)=3,
由y(0)=y’(0)=0,得y’’(0)=3.
转载请注明原文地址:https://kaotiyun.com/show/Ju04777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x—y|k.证明:当k>1时,f(x)≡常数.
设f(x)在区间[0,1]上可导,f(1)=2x2f(x)dx.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β一αm线性无关.
设A=(ai≠0,i=1,2,…,n),求A-1.
求幂级数的收敛域.
计算I=∫L(ex+1)cosydx一[(ex+x)siny—x]dy,其中L为由点A(2,0)沿心形线r=1+cosθ上侧到原点的有向曲线段.
设α为n维非零列向量,A=E-.证明:α为矩阵A的特征向量.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设ATA=E,证明:A的实特征值的绝对值为1.
设f(x)=则下列结论(1)x=1为可去间断点.(2)x=0为跳跃间断点.(3)x=-1为无穷间断点.中正确的个数是
随机试题
薄钢板手工气割的工艺要点是()。
A.蛙跳式采血B.急性非等容性稀释式C.步积式采血D.转换式采血E.急性高容性稀释式简单手术需血量较少的储存方式是
某技师在堆瓷时,由于震动强度过大,会导致A.容易出现裂纹B.容易出现气泡C.破坏了瓷粉层次,烧结后色泽不清D.瓷粉在加热过程中收缩加大E.金瓷冠在烧结完成后形态不佳
患者,女性,40岁,慢性胆囊炎急性发作。经治疗病情好转,其饮食的选用宜为
甲公司派员工伪装成客户,设法取得乙公司盗版销售其所开发软件的证据并诉至法院。审理中,被告认为原告的“陷阱取证”方式违法。法院认为,虽然非法取得的证据不能采信,但法律未对非法取证行为穷尽式列举,特殊情形仍需依据法律原则具体判断。原告取证目的并无不当,也未损害
资料一甲公司是典型的家族式企业集团,在30个地区开展业务,共拥有万余名雇员,年收入超过50亿元。并一度被视为牛奶制品产业成功企业的代表。1990年,22岁的王林继承了祖父创建的冷冻食品公司,后开创了甲公司。当时,要想在牛奶行业做出名堂绝非易事,因为当地
下面是《义务教育教科书(人教版)·数学七年级上册》中的内容,据此回答下列问题。1.2.4绝对值两辆汽车从同一处O出发,分别向东、西方向行驶10km,到达A,B两处(图1.2-6)。它们的行驶路线相同吗?它们的行驶路程相等吗?
人们是否接受,或在多大程度上接受市场竞争体制,与其说是个文化差异问题,毋宁说是个历史案例问题,即竞争是否公正的问题。文化传统差异极大的拉美、俄国、伊朗都有强大的公众反竞争运动,而文化类型相同的美英则此无彼有。可见回避竞争是否公正而专在“文化传统”、“深层心
如果一定要找到油价上涨的凶手,连驾驶者自己恐怕都不可避免地受到_______,因为消费者不断上升的欲望构成了石油公司_______的基础。填入画横线部分最恰当的一项是()。
如果J的讲座被安排在第四场,则第三场讲座的学者必定是:如果J的讲座被安排在F之前的某一场,则N的讲座可以被安排到下列哪一场?
最新回复
(
0
)