首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量U在[一2,2]上服从均匀分布,记随机变量 求:(1)Cov(X,Y),并判定X与Y的独立性; (2)D[X(1+Y)].
设随机变量U在[一2,2]上服从均匀分布,记随机变量 求:(1)Cov(X,Y),并判定X与Y的独立性; (2)D[X(1+Y)].
admin
2018-09-20
44
问题
设随机变量U在[一2,2]上服从均匀分布,记随机变量
求:(1)Cov(X,Y),并判定X与Y的独立性;
(2)D[X(1+Y)].
选项
答案
(1)X,Y的全部可能取值都为一1,1,且 P{X=一1,Y=一1}=P{U≤一1,U≤1}=P{U≤一1}=[*] P{X=一1,Y=1}=P{U≤一1,U>1}=0, P{X=1,Y=一1}=P{U>一1,U≤1}=P{-1<U≤1}=[*] P{X=1,Y=1}=P{U>一1,U>1}=P{U>1}=[*] 所以(X,Y)的分布律及边缘分布律为 [*] (2)D[X(1+Y)]=D(X+XY)=DX+D(XY)+2Cov(X,XY) =DX+D(XY)+2E(X
2
Y)一2EXE(XY). ① 其中 [*] 此外,由于XY及X
2
Y的分布律分别为 [*] 所以 E(XY)=0,E(X
2
Y
2
)=[*] D(XY)=E(X
2
Y
2
)一[E(XY)]
2
=1—0=1, [*] 将以上式子代入①得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/K3W4777K
0
考研数学三
相关试题推荐
已知A=,求A的特征值、特征向量,并判断A能否对角化,说明理由.
设函数f(x)在[0,1]二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1)使|f’’(ξ)|≥4.
设二维随机变量(X,Y)的联合密度函数为试求:(Ⅰ)数学期望EX,EY;(Ⅱ)方差DX,DY;(Ⅲ)协方差Cov(X,Y),D(5X-3Y).
将长度为L的棒随机折成两段,则较短段的数学期望为______.
两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击.如果第i名射手每次命中概率为pi(0<pi<1,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为_________.
设随机变量X与Y相互独立同分布,且X的概率分布为,记U=max(X,Y),V=min(X,Y),试求:(Ⅰ)(U,V)的分布;(Ⅱ)E(UV);(Ⅲ)ρUV.
设随机变量X~E(1),记Y=max(X,1),则E(Y)=
设α,β为四维非零列向量,且α⊥β,令A=αβT,则A的线性无关特征向量个数为()
设随机变量X与Y相互独立,下表列出二维随机变量(X,Y)的联合分布律及关于X和Y的边缘分布律的部分数值,试将其余的数值填入表中空白处.
设试验成功的概率为,失败的概率为,独立重复试验直到成功为止,试求试验次数的数学期望.
随机试题
梁某在未取得医生执业资格和医疗机构执业许可证的情况下,自2012年3月起便在上海市嘉定区某出租房内开设非法诊所,为孕妇做B超检查、鉴别胎儿性别,并利用引流器等设备为孕妇进行选择性别的终止妊娠手术,因为部分堕胎手术不成功,导致很多女性患上了不孕不育症,其中还
经济学家:美国的个人所得税是累进税,税法极其复杂。想诚实纳税的人经常因理解错误,而出现申报错误;而故意避税的人总能找到税法的漏洞。一般而言,避税空间的大小与税制的复杂程度成正比,避税能力的高低与纳税人收入水平成正比。复杂税制造成的避税空间大多会被富人利用,
下列哪种新生的细胞是机化时出现的特征性细胞
患者平素沉默寡言,性格内向,近月余现精神过度抑郁,胸闷太息,纳呆腹胀,泄泻。诊为
甲公司与乙公司因合同纠纷向A市B区法院起诉.乙公司应诉。经开庭审理,法院判决甲公司胜诉。乙公司不服B区法院的一审判决,以双方签订了仲裁协议为由向A市中级法院提起上诉,要求据此撤销一审判决,驳回甲公司的起诉。A市中级法院的错误处理有:()
下列关于作价出资(入股)土地使用权变更的描述中,正确的有()。
下列属于报价中的风险费用的是( )。
甲乙二人合伙开办一饭店,二人轮流掌勺。乙在做菜时,因疏忽大意,误将不能同食的两种食物做成菜,造成顾客食物中毒,则()。
Allaroundtheworld,lawyersgeneratemorehostilitythanthemembersofanyotherprofession—withthepossibleexceptionofjo
WhetheryouarehikingthroughthemagnificentredwoodsofNorthernCalifornia,sleepingunderthebrilliantstarsoftheTexas
最新回复
(
0
)