首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 已知三阶矩阵A的第1行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
[2005年] 已知三阶矩阵A的第1行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
admin
2019-04-08
29
问题
[2005年] 已知三阶矩阵A的第1行是(a,b,c),a,b,c不全为零,矩阵B=
(k为常数),且AB=O.求线性方程组AX=0的通解.
选项
答案
对题设AB=O要有两种思路:一是秩(A)+秩(B)≤n;另一是B的列向量都是AX=0的解向量,据此可得到下列解法. (1)如k≠9,则秩(B)=2,因而由秩(A)+秩(B)≤3得到秩(A)≤1.显然秩(A)≥1,故秩(A)=1,于是AX=0的一个基础解系含n一秩(A)=3—1=2个解向量.由AB=0知α
1
=[1,2,3]
T
,α
2
=[3,6,k]
T
为AX=0的两个线性无关的解向量,于是其通解为k
1
α
1
+k
2
α
2
=k
1
[1,2,3]
T
+k
2
[3,6,k]
T
,k
1
,k
2
为任意两个常数. (2)如k=9,则秩(B)=1,于是秩(A)≤3一秩(B)=2.因而秩(A)=1或秩(A)=2. 当秩(A)=1时,则A的第2,3两行均与第1行成比例,故Ax=0的等价方程组为ax
1
+bx
2
+cx
3
=0,不妨设c≠0,则 [*] 其一个基础解系含2个解向量β
1
=[1,0,一a/c]
T
,β
2
=[0,1,一6/c]
T
.为方便计,不妨取为 β
1
=[c,0,一a]
T
,β
2
=[0,c,一6]
T
,其通解为l
1
β
1
+l
2
β
2
,l
1
,l
2
为任意常数. 当秩(A)=2时,则AX=0的一个基础解系只含n一秩(A)=3—2=1个解向量.此解向量γ可取B中任意一个列向量,不妨令γ=[1,2,3]
T
,则其通解为tγ,其中t为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/KD04777K
0
考研数学一
相关试题推荐
设线性方程组与方程x1+2x2+x3=a-1有公共解,求a的值及所有公共解。
设矩阵α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为______。
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
已知齐次线性方程组同解,求a,b,c的值.
设矩阵A=可逆,向量α=是矩阵A*的特征向量,其中A*是A的伴随矩阵,求a,b的值.
设a=(a1,a2,…an)T,a1≠0,A=aaT,(1)证明λ=0是A的n-1重特征值;(2)求A的非零特征值及n个线性无关的特征向量.
在R4中求一个单位向量,使它与α1=(1,1,-1,1)T,α2=(1,-1,-1,1)T,α3=(2,1,1,3)T都正交.
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
随机试题
截至2020年4月,中国裁判文书网公布文书9195万份,中国审判流程信息公开网向当事人公开案件2900万件,中国庭审公开网直播案件696万件,观看量237亿人次。这说明我国审判机关致力于()。①确保检察院依法独立行使检察权②确保审判
肝气郁结型经行情志异常的主症错误的是
患者男,2月前发生脑梗,现病情稳定,肢体功能良好,无痉挛,无肌力低下,口齿清楚,但患者不能按指令指出自身口、鼻、眼等身体部位,能说出牙刷的作用,但不能正确使用牙刷。患者出现的失用症为
某生参加高考前数月产生严重焦虑,来到咨询室后,该生讲述了其内心的恐惧与担心,治疗师只是认真地倾听,不做指令性指导,这种心理疗法的理论属于
物业价格与一般物品价格相比,不同之处体现在物业价格()。
“上善若水”一语出自()。
设,则100a的整数部分是()。
《唐律疏议.名例律》规定:“诸年70以上,15以下,及废疾,犯流罪以下,收赎(但犯加役流、反逆缘坐流、会赦犹流者,不用此律;至配所,免居作)。80以上,10岁以下,及笃疾,犯反、逆、杀人应死者,上请;盗及伤人者,亦收赎(有官爵者,各从官当、除、免法);余皆
(1)将考生文件夹下HARE\DOWN文件夹中的文件EFLFU.FMP设置为存档和只读属性。(2)将考生文件夹下WID\DEIL文件夹中的文件ROCK.PAS删除。(3)在考生文件夹下HOTACHI文件夹中建立一个新文件夹DOWN。(4)将考生文件夹
YouwillheararadiointerviewwiththeManagingDirectorofarestaurantchain.Foreachquestion(23-30),markoneletter(
最新回复
(
0
)